精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆),若椭圆上的一动点到右焦点的最短距离为,且右焦点到直线的距离等于短半轴的长,已知,过的直线与椭圆交于两点.

1)求椭圆的方程;

2)求的取值范围.

【答案】(1);(2

【解析】试题分析:1)利用椭圆C上的一动点到右焦点的最短距离为且右焦点到直线x=

的距离等于短半轴的长.已知点P40),列出方程组,求出ab,即可求椭圆C的方程;2)联立直线与椭圆方程的方程组,设点Mx1y1),Nx2y2),利用韦达定理,代入向量的数量积求解即可.

试题解析:

1由题意椭圆上的一动点到右焦点的最短距离为且右焦点到直线的距离等于短半轴的长已知点,知解得

故椭圆的方程.

2由题意知直线的斜率存在,设直线的方程为.

设点

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , S3=15,a3和a5的等差中项为9
(1)求an及Sn
(2)令bn= (n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的一个焦点与的焦点重合,点在椭圆上.

(1)求椭圆的方程;

(2)设直线 )与椭圆交于两点,且以为对角线的菱形的一顶点为,求面积的最大值(为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中,前m(m为奇数)项的和为77,其中偶数项之和为33,且a1﹣am=18,则数列{an}的通项公式为an=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式为12x2﹣ax>a2
(1)当a=2时,求不等式的解集;
(2)当a∈R时,求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ).

(Ⅰ)求函数的单调区间;

(Ⅱ)若函数处取得极大值,求正实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各式的大小关系正确的是(
A.sin11°>sin168°
B.sin194°<cos160°
C.tan(﹣ )<tan(﹣
D.cos(﹣ )>cos

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次测试后,一位老师从本班48同学中随机抽取6位同学,他们的语文、历史成绩如下表:

学生编号

1

2

3

4

5

6

语文成绩

60

70

74

90

94

110

历史成绩

58

63

75

79

81

88

(1)若规定语文成绩不低于90分为优秀,历史成绩不低于80分为优秀,以频率作概率,分别估计该班语文、历史成绩优秀的人数;

(2)用上表数据画出散点图易发现历史成绩与语文成绩具有较强的线性相关关系,求的线性回归方程(系数精确到0.1).

参考公式:回归直线方程是,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明同学在寒假社会实践活动中,对白天平均气温与某家奶茶店的品牌饮料销量之间的关系进行了分析研究,他分别记录了1月11日至1月15日的白天气温)与该奶茶店的品牌饮料销量(杯),得到如表数据:

日期

1月11号

1月12号

1月13号

1月14号

1月15号

平均气温

9

10

12

11

8

销量(杯)

23

25

30

26

21

(1)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;

(2)请根据所给五组数据,求出关于的线性回归方程式

(3)根据(2)所得的线性回归方程,若天气预报1月16号的白天平均气温为,请预测该奶茶店这种饮料的销量.

(参考公式:

查看答案和解析>>

同步练习册答案