精英家教网 > 高中数学 > 题目详情

【题目】已知等比数列{an}的各项均为正数,且a1a100+a3a98=8,则log2a1+log2a2+…+log2a100=(
A.10
B.50
C.100
D.1000

【答案】C
【解析】解:∵数列{an}为各项均为正数的等比数列,且a1a100+a3a98=8,
∴a1a100=a2a99=a3a98=…=a50a51=4,
∴log2a1a100=log24=2,
即log2a1+log2a100=log2a2+log2a99=…=log2a50+log2a51=2,
∴log2a1+log2a2+…+log2a100
=(log2a1+log2a100)+(log2a2+log2a99)+…+(log2a50+log2a51)=2×50=100.
故选:C.
【考点精析】掌握数列的前n项和是解答本题的根本,需要知道数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】由于渤海海域水污染严重,为了获得第一手的水文资料,潜水员需要潜入水深为60米的水底进行作业,根据经验,潜水员下潜的平均速度为(米/单位时间),每单位时间消耗氧气(升),在水底作业10个单位时间,每单位时间消耗氧气(升),返回水面的平均速度为(米/单位时间),每单位时间消耗氧气(升),记该潜水员完成此次任务的消耗氧气总量为(升).

(1)求关于的函数关系式;

(2)若,求当下潜速度取什么值时,消耗氧气的总量最少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为,其范围为,分为五个级别, 畅通; 基本畅通; 轻度拥堵; 中度拥堵; 严重拥堵.早高峰时段(),从某市交通指挥中心随机选取了三环以内的50个交通路段,依据其交通指数数据绘制的频率分布直方图如图.

(1)这50个路段为中度拥堵的有多少个?

(2)据此估计,早高峰三环以内的三个路段至少有一个是严重拥堵的概率是多少?

(3)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟,中度拥堵为42分钟,严重拥堵为60分钟,求此人所用时间的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点且与圆相切,记动圆圆心的轨迹为曲线.

(1)求曲线的方程;

(2)过点且斜率不为零的直线交曲线 两点,在轴上是否存在定点,使得直线的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中的前n项和为Sn= ,又an=log2bn
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了鼓励市民节约用水,实行“阶梯式”水价,将该市每户居民的月用水量划分为三档:月用水量不超过4吨的部分按2元/吨收费,超过4吨但不超过8吨的部分按4元/吨收费,超过8吨的部分按8元/吨收费.

(1)求居民月用水量费用(单位:元)关于月用电量(单位:吨)的函数解析式;

(2)为了了解居民的用水情况,通过抽样,获得今年3月份100户居民每户的用水量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年3月份用水费用不超过16元的占60%,求的值;

(3)若地区居民用水量平均值超过6吨,则说明该地区居民用水没有节约意识在满足(2)的条件下,请你估计市居民用水是否有节约意识(同一组中的数据用该组区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(文科)某出租车公司响应国家节能减排的号召,已陆续购买了140辆纯电动汽车作为运营车辆,目前我国主流纯电动汽车按续驶里程数(单位:公里)分为3类,即 .对这140辆车的行驶总里程进行统计,结果如下表:

(1)从这140辆汽车中任取1辆,求该车行驶总里程超过5万公里的概率; (2)公司为了了解这些车的工作状况,决定抽取14辆车进行车况分析,按表中描述的六种情况进行分层抽样,设从类车中抽取了辆车. (ⅰ)求的值; (ⅱ)如果从这辆车中随机选取2辆车,求恰有1辆车行驶总里程超过5万公里的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)求证:f(x)+f(1﹣x)=
(2)设数列{an}满足an=f(0)+f( )+f( )+…+f( )+f(1),求an
(3)设数列{an}的前项n和为Sn , 若Sn≥λan(n∈N*)恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100]

(1)求频率分布图中a的值;
(2)估计该企业的职工对该部门评分不低于80的概率;
(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.

查看答案和解析>>

同步练习册答案