精英家教网 > 高中数学 > 题目详情
2.已知cos($\frac{π}{4}$+x)=$\frac{3}{5}$,$\frac{17π}{12}$$<x<\frac{7π}{4}$.
(Ⅰ)求sin2x的值.
(Ⅱ)求tanx的值.

分析 (Ⅰ)由诱导公式可求cos2($\frac{π}{4}$+x)=-sin2x,又利用二倍角公式可得cos2($\frac{π}{4}$+x)=2cos2($\frac{π}{4}$+x)-1=-$\frac{7}{25}$,即可解得sin2x的值.
(Ⅱ)由已知可求范围$\frac{5π}{3}<x+\frac{π}{4}<2π$,利用同角三角函数关系式可求sin($\frac{π}{4}$+x),可得tan($\frac{π}{4}$+x)=$\frac{sin(\frac{π}{4}+x)}{cos(\frac{π}{4}+x)}$=$\frac{1+tanx}{1-tanx}$=-$\frac{4}{3}$,即可得解.

解答 解:(Ⅰ)∵cos2($\frac{π}{4}$+x)=cos($\frac{π}{2}$+2x)=-sin2x,
又cos2($\frac{π}{4}$+x)=2cos2($\frac{π}{4}$+x)-1=2×$\frac{9}{25}-1$=-$\frac{7}{25}$.
∴sin2x=$\frac{7}{25}$.
(Ⅱ)∵$\frac{17π}{12}$$<x<\frac{7π}{4}$.
∴$\frac{5π}{3}<x+\frac{π}{4}<2π$,
∴sin($\frac{π}{4}$+x)=-$\sqrt{1-co{s}^{2}(\frac{π}{4}+x)}$=-$\frac{4}{5}$,
∴tan($\frac{π}{4}$+x)=$\frac{sin(\frac{π}{4}+x)}{cos(\frac{π}{4}+x)}$=$\frac{1+tanx}{1-tanx}$=-$\frac{4}{3}$,
∴tanx=7.

点评 本题主要考查了诱导公式,二倍角公式,同角三角函数关系式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设数列{an}满足a1=2,an=4an-1+2n,n∈N*,且n≥2.
(1)求证:数列{an+2n}为等比数列;
(2)若Sn为数列{an}的前n项和,设bn=$\frac{{2}^{n}}{{S}_{n}}$,n∈N*,证明:b1+b2+…+bn<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若等差数列{an}的首项为a1=C5m11-2m-A11-3m2m-2(m∈N),公差是${(\frac{5}{2x}-\frac{2}{5}\root{3}{x^2})^n}$展开式中的常数项,其中n为7777-15除以19的余数,求通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若(1-2x)11=a0+a1x+a2x2+…+a11x11,则a2+a3+…+a11等于(  )
A.20B.16C.-18D.-17

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.有6个大小相同的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10,现从中任取4个球,有如下几种变量:①X表示取出的最大号码;②Y表示取出的最小号码;③取出一个黑球记2分,取出一个白球记1分,ξ表示取出的4个球的总得分;④η表示取出的黑球个数,这四种变量中服从超几何分布的是(  )
A.①②B.③④C.①②④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|≤$\frac{π}{2}$)与坐标轴的三个交点P、Q、R满足P(1,0),M(2,-2)为线段QR的中点,则A=(  )
A.2$\sqrt{3}$B.$\frac{7\sqrt{3}}{3}$C.$\frac{8\sqrt{3}}{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设向量$\overrightarrow{a}$=(-1,4),$\overrightarrow{b}$=(2,x),若($\overrightarrow{a}+\overrightarrow{b}$)$∥(\overrightarrow{a}-\overrightarrow{b})$,则x等于(  )
A.$\frac{1}{2}$B.2C.-2D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线y2=8x,P是抛物线的动弦AB的中点.
(Ⅰ)当P的坐标为(2,3)时,求直线AB的方程;
(Ⅱ)当直线AB的斜率为1时,求线段AB的垂直平分线在x轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)满足$f(x+1)=\frac{2f(x)}{f(x)+2}$,f(1)=1,(x∈R,x≠-1).
(1)分别计算f(2)、f(3)、f(4)的值,并猜函数f(x)的表达式;(不需要证明)
(2)求集合A={x|f(x)<x}.

查看答案和解析>>

同步练习册答案