【题目】已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)= (|x﹣a2|+|x﹣2a2|﹣3a2),若x∈R,f(x﹣1)≤f(x),则实数a的取值范围为( )
A.[﹣ , ]
B.[﹣ , ]
C.[﹣ , ]
D.[﹣ , ]
科目:高中数学 来源: 题型:
【题目】某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )
表1
成绩 | 不及格 | 及格 | 总计 |
男 | 6 | 14 | 20 |
女 | 10 | 22 | 32 |
总计 | 16 | 36 | 52 |
表2
视力 | 好 | 差 | 总计 |
男 | 4 | 16 | 20 |
女 | 12 | 20 | 32 |
总计 | 16 | 36 | 52 |
表3
智商 | 偏高 | 正常 | 总计 |
男 | 8 | 12 | 20 |
女 | 8 | 24 | 32 |
总计 | 16 | 36 | 52 |
表4
阅读量 | 丰富 | 不丰富 | 总计 |
男 | 14 | 6 | 20 |
女 | 2 | 30 | 32 |
总计 | 16 | 36 | 52 |
A.成绩
B.视力
C.智商
D.阅读量
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知常数a>0,函数f(x)=ln(1+ax)﹣ .
(1)讨论f(x)在区间(0,+∞)上的单调性;
(2)若f(x)存在两个极值点x1 , x2 , 且f(x1)+f(x2)>0,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某零售店近5个月的销售额和利润额资料如下表:
商店名称 | |||||
销售额/千万元 | 3 | 5 | 6 | 7 | 9 |
利润额/百万元 | 2 | 3 | 3 | 4 | 5 |
(1)画出散点图.观察散点图,说明两个变量有怎样的相关关系;
(2)用最小二乘法计算利润额关于销售额的回归直线方程;
(3)当销售额为4千万元时,利用(2)的结论估计该零售店的利润额(百万元).
[参考公式:,]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:
f(t)=10﹣ ,t∈[0,24)
(1)求实验室这一天的最大温差;
(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}满足:a1=2,且a1 , a2 , a5成等比数列.
(1)求数列{an}的通项公式;
(2)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1,记点M的轨迹为C.
(1)求轨迹C的方程;
(2)设斜率为k的直线l过定点P(﹣2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)= ,其中k<﹣2.
(1)求函数f(x)的定义域D(用区间表示);
(2)讨论函数f(x)在D上的单调性;
(3)若k<﹣6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com