精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)= (|x﹣a2|+|x﹣2a2|﹣3a2),若x∈R,f(x﹣1)≤f(x),则实数a的取值范围为(
A.[﹣ ]
B.[﹣ ]
C.[﹣ ]
D.[﹣ ]

【答案】B
【解析】解:当x≥0时,
f(x)=
由f(x)=x﹣3a2 , x>2a2 , 得f(x)>﹣a2
当a2<x≤2a2时,f(x)=﹣a2
由f(x)=﹣x,0≤x≤a2 , 得f(x)≥﹣a2
∴当x>0时,
∵函数f(x)为奇函数,
∴当x<0时,
∵对x∈R,都有f(x﹣1)≤f(x),
∴2a2﹣(﹣4a2)≤1,解得:
故实数a的取值范围是
故选:B.
【考点精析】解答此题的关键在于理解函数的奇偶性的相关知识,掌握偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是(
表1

成绩
性别

不及格

及格

总计

6

14

20

10

22

32

总计

16

36

52

表2

视力
性别

总计

4

16

20

12

20

32

总计

16

36

52

表3

智商
性别

偏高

正常

总计

8

12

20

8

24

32

总计

16

36

52

表4

阅读量
性别

丰富

不丰富

总计

14

6

20

2

30

32

总计

16

36

52


A.成绩
B.视力
C.智商
D.阅读量

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为平行四边形, 为侧棱的中点.

(Ⅰ)求证: ∥平面

(Ⅱ)若,,

求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知常数a>0,函数f(x)=ln(1+ax)﹣
(1)讨论f(x)在区间(0,+∞)上的单调性;
(2)若f(x)存在两个极值点x1 , x2 , 且f(x1)+f(x2)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某零售店近5个月的销售额和利润额资料如下表:

商店名称

销售额/千万元

3

5

6

7

9

利润额/百万元

2

3

3

4

5

(1)画出散点图.观察散点图,说明两个变量有怎样的相关关系;

(2)用最小二乘法计算利润额关于销售额的回归直线方程;

(3)当销售额为4千万元时,利用(2)的结论估计该零售店的利润额(百万元).

[参考公式:]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:
f(t)=10﹣ ,t∈[0,24)
(1)求实验室这一天的最大温差;
(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足:a1=2,且a1 , a2 , a5成等比数列.
(1)求数列{an}的通项公式;
(2)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1,记点M的轨迹为C.
(1)求轨迹C的方程;
(2)设斜率为k的直线l过定点P(﹣2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,其中k<﹣2.
(1)求函数f(x)的定义域D(用区间表示);
(2)讨论函数f(x)在D上的单调性;
(3)若k<﹣6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).

查看答案和解析>>

同步练习册答案