精英家教网 > 高中数学 > 题目详情

【题目】近年来,我国工业经济发展迅速,工业增加值连年攀升,某研究机构统计了近十年(从2008年到2017年)的工业增加值(万亿元),如下表:

年份

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

年份序号

1

2

3

4

5

6

7

8

9

10

工业增加值

13.2

13.8

16.5

19.5

20.9

22.2

23.4

23.7

24.8

28

依据表格数据,得到下面的散点图及一些统计量的值.

5.5

20.6

82.5

211.52

129.6

(1)根据散点图和表中数据,此研究机构对工业增加值(万亿元)与年份序号的回归方程类型进行了拟合实验,研究人员甲采用函数,其拟合指数;研究人员乙采用函数,其拟合指数;研究人员丙采用线性函数,请计算其拟合指数,并用数据说明哪位研究人员的函数类型拟合效果最好.(注:相关系数与拟合指数满足关系).

(2)根据(1)的判断结果及统计值,建立关于的回归方程(系数精确到0.01);

(3)预测到哪一年的工业增加值能突破30万亿元大关.

附:样本 的相关系数

.

【答案】(1)见解析(2)32019

【解析】

(1).

因为越大,拟合效果越好,所以丙的拟合效果最好.

2

.

因此关于的线性回归方程为

3)从2008年开始计数,

2018年是第11年,其工业增加值的预报值:

.

2019年是第12年,其工业增加值的预报值:

.

故可以预测到2019年的工业增加值能突破30万亿元大关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

1)求函数的单调区间;

2)若函数在区间内单调递增,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆在左右焦点分别为动点在椭圆的周长为6,且面积的最大值为.

(1)求的方程

(2)设直线的另一个交点为分别作直线的垂线垂足为轴的交点为.的面积成等差数列求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市教学研究室为了对今后所出试题的难度有更好的把握,提高命题质量,对该市高三理科数学试卷的得分情况进行了调研.从全市参加考试的理科考生中随机抽取了100名考生的数学成绩(满分150分),将数据分成9组:,并整理得到如图所示的频率分布直方图.用统计的方法得到样本标准差,以频率值作为概率估计值.

(Ⅰ)根据频率分布直方图,求抽取的100名理科考生数学成绩的平均分及众数

(Ⅱ)用频率估计概率,从该市所有高三理科考生的数学成绩中随机抽取3个,记理科数学成绩位于区间内的个数为,求的分布列及数学期望

(Ⅲ)从该市高三理科数学考试成绩中任意抽取一份,记其成绩为,依据以下不等式评判(表示对应事件的概率):

,②

,其中

评判规则:若至少满足以上两个不等式,则给予这套试卷好评,否则差评.试问:这套试卷得到好评还是差评?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,天花板上挂着3串玻璃球,射击玻璃球规则:每次击中1球,每串中下面球没击中,上面球不能击中,则把这6个球全部击中射击方法数是(

A.78B.60C.48D.36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为正方形的四棱锥中,平面,点分别在棱上,且满足.

(1)证明:平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系已知曲线的参数方程为,(为参数),点.以坐标原点为极点轴正半轴为极轴建立极坐标系直线的极坐标方程为.

(1)试判断点是否在直线并说明理由

(2)设直线与曲线交于点的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次篮球投篮测试中,记分规则如下(满分为分):①每人可投篮次,每投中一次记分;②若连续两次投中加分,连续三次投中加分,连续四次投中加分,以此类推,…,七次都投中加.假设某同学每次投中的概率为,各次投篮相互独立,则:(1)该同学在测试中得分的概率为______;(2)该同学在测试中得分的概率为______..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知球是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)的外接球,,点在线段上,且,过点作球的截面,则所得截面圆面积的取值范围是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案