分析 (1)先根据约束条件画出可行域,根据$u=\frac{y}{x}$的几何意义求最值,
(2)根据z=x2+y2的几何意义是可行域上的点到原点距离的平方,即可求出最值.
解答 解:(1)满足y满足$\left\{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}\right.$
约束条件的平面区域如图所示,A(1,2),B(4,2),C(3,1),
(1)$u=\frac{y}{x}$的几何意义可行域上的点是到原点的斜率;
当直线为OA时,u有最大值为2;
当直线为OC时,u有最小值为$\frac{1}{3}$;所以,$u∈[\frac{1}{3},2]$
(2)z=x2+y2的几何意义是可行域上的点到原点距离的平方;z=x2+y2的最大值为|OB|2=20,
最小值为O到直线AC的距离的平方,为5;
所以,z∈[5,20]
点评 本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{4}{a^2}$ | B. | $\frac{4}{9}{a^2}$ | C. | $\frac{1}{4}π{a^2}$ | D. | $\frac{4}{9}π{a^2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\overrightarrow{FE}$ | B. | $\overrightarrow{AC}$ | C. | $\overrightarrow{DC}$ | D. | $\overrightarrow{FC}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-2,1,-4) | B. | (-2,-1,-4) | C. | (2,-1,4) | D. | (2,1,-4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 8+r2 | B. | 8+2r2 | C. | 16+r2 | D. | 16+2r2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com