(本题满分15分)已知过点(,0)()的动直线交抛物线于、两点,点与点关于轴对称.(I)当时,求证:;
(II)对于给定的正数,是否存在直线:,使得被以为直径的圆所截得的弦长为定值?如果存在,求出的方程;如果不存在,试说明理由.
(Ⅰ) 见解析 (Ⅱ) 所以当时,存在直线,截得的弦长为,
当时,不存在满足条件的直线
方法一:(I)设,
得
…………………………………………………………3 分
==0
∴ ………………………………………………6 分
方法二:过A、B分别作准线的垂线,垂足分别为、,
有
由
∴
∴ ……………………………………………………6 分
(II)设点是轨迹C上的任意一点,则以为直径的圆的圆心为,
假设满足条件的直线存在,直线被圆截得的弦为,则
………………10分
弦长为定值,则,即,
此时, ………………12分
所以当时,存在直线,截得的弦长为,
当时,不存在满足条件的直线…………………………………………15 分
科目:高中数学 来源:2013届浙江省余姚中学高三上学期期中考试文科数学试卷(带解析) 题型:解答题
(本题满分15分)已知点(0,1),,直线、都是圆的切线(点不在轴上).
(Ⅰ)求过点且焦点在轴上的抛物线的标准方程;
(Ⅱ)过点(1,0)作直线与(Ⅰ)中的抛物线相交于两点,问是否存在定点使为常数?若存在,求出点的坐标及常数;若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省桐乡市高三10月月考理科数学 题型:解答题
(本题满分15分)已知函数.
(Ⅰ)若为定义域上的单调函数,求实数m的取值范围;
(Ⅱ)当时,求函数的最大值;
(Ⅲ)当,且时,证明:.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省桐乡市高三下学期2月模拟考试文科数学 题型:解答题
(本题满分15分)已知圆N:和抛物线C:,圆的切线与抛物线C交于不同的两点A,B,
(1)当直线的斜率为1时,求线段AB的长;
(2)设点M和点N关于直线对称,问是否存在直线使得?若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:杭州市2010年第二次高考科目教学质量检测 题型:解答题
(本题满分15分)已知直线,曲线
(1)若且直线与曲线恰有三个公共点时,求实数的取值;
(2)若,直线与曲线M的交点依次为A,B,C,D四点,求|AB+|CD|的取值范围。[来源:Z+xx+k.Com]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com