设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1.
(1)求数列{an}和{bn}的通项公式;( 6分)
(2)设cn=,求数列{cn}的前n项和Tn.
22. (1) 当n=1时,a1=S1=2
当n≥2时,an=Sn-Sn-1=2n2-2(n-1)2=4n-2,
又a1=2满足上式,
∴an=4n-2. ………………………………………3分
设{bn}的公比为q,由b2(a2-a1)=b1知,b1=2,b2=,所以q=,
∴bn=b1qn-1=2×,即bn=. …………………………6分
(2)∵cn===(2n-1) 4n-1, …………………………8分
∴Tn=1+3×41+5×42+…+(2n-1)4n-1 ①
又4Tn=1×41+3×42+5×42+…+(2n-3)4n-1+(2n-1)4n ②……………10分
①-②得:-3Tn= 1+2(41+42+43+…+4n-1)-(2n-1)4n
=-(2n-1)4n
=
∴Tn=[(6n-5)4n+5].
【解析】略
科目:高中数学 来源: 题型:
3 |
2 |
3 |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
3 |
2 |
1 |
2 |
1 |
S1 |
1 |
S2 |
1 |
Sn |
10 |
9 |
查看答案和解析>>
科目:高中数学 来源: 题型:
|
Sn |
5•2n |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com