对于数列,把作为新数列的第一项,把或()作为新数列的第项,数列称为数列的一个生成数列.例如,数列的一个生成数列是.已知数列为数列的生成数列,为数列的前项和.
(1)写出的所有可能值;
(2)若生成数列满足,求数列的通项公式;
(3)证明:对于给定的,的所有可能值组成的集合为.
(1)(2)(3)详见解析.
解析试题分析:(1)列举出数列所有可能情况,共种,分别计算和值为,本题目的初步感观生成数列(2)已知和项解析式,则可利用求通项. 当时,,而当且仅当时,才成立.所以(3)本题实际是对(1)的推广.证明的实质是确定集合的个数及其表示形式.首先集合的个数最多有种情形,而每一种的值都不一样,所以个数为种情形,这是本题的难点,利用同一法证明. 确定集合的表示形式,关键在于说明分子为奇数.由得分子必是奇数,奇数个数由范围确定.
试题解析:解:(1)由已知,,,
∴,
由于,
∴可能值为. 3分
(2)∵,
当时,,
当时,,
,, 5分
∵是的生成数列,
∴;;;
∴
在以上各种组合中,
当且仅当时,才成立.
∴. 8分
(3)共有种情形.
,即,
又,分子必是奇数,
满足条件的奇数共有个. 10分
设数列与数列为两个生成数列,数列的前项和为,数列的前项和为,从第二项开始比较两个数列,设第一个不相等的项为第项.
由于,不妨设,
则
科目:高中数学 来源: 题型:解答题
已知数列和的通项公式分别为,.将与中的公共项按照从小到大的顺序排列构成一个新数列记为.
(1)试写出,,,的值,并由此归纳数列的通项公式;
(2)证明你在(1)所猜想的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
若数列{an}满足an+1=an+an+2(n∈N*),则称数列{an}为“凸数列”.
(1)设数列{an}为“凸数列”,若a1=1,a2=-2,试写出该数列的前6项,并求出前6项之和;
(2)在“凸数列”{an}中,求证:an+3=-an,n∈N*;
(3)设a1=a,a2=b,若数列{an}为“凸数列”,求数列前2011项和S2011.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
若无穷数列满足:①对任意,;②存在常数,对任意,,则称数列为“数列”.
(Ⅰ)若数列的通项为,证明:数列为“数列”;
(Ⅱ)若数列的各项均为正整数,且数列为“数列”,证明:对任意,;
(Ⅲ)若数列的各项均为正整数,且数列为“数列”,证明:存在,数列为等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列的通项公式为,数列的前项和为,且满足.
(1)求的通项公式;
(2)在中是否存在使得是中的项,若存在,请写出满足题意的其中一项;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com