精英家教网 > 高中数学 > 题目详情
8.如图,已知点M在A城的南偏西20°的方向上,现有一辆汽车在点B沿公路向A城行驶,公路的走向是A城的南偏东40°.开始时,汽车到M的距离为31km,汽车前进20km到达点C时,到M的距离缩短了10km,问汽车还要行驶多远才能到达A城?

分析 由题意可知MC=21,MB=31,BC=20,∠MAB=60°,由余弦定理可求得cos∠MCB,进而求得cos∠ACM和sin∠ACM,再由正弦定理进而求得AC.

解答 解:△AMC中,MC=21,MB=31,BC=20,∠MAB=60°,
由余弦定理得:cos∠MCB=$\frac{2{1}^{2}+2{0}^{2}-3{1}^{2}}{2×21×20}$=-$\frac{1}{7}$,
cos∠ACM=-cos∠MCB=$\frac{1}{7}$,∴sin∠ACM=$\sqrt{1-\frac{1}{49}}$=$\frac{4\sqrt{3}}{7}$.
△AMC中,由正弦定理得:AC=$\frac{MC•sin∠AMC}{sin∠MAC}$=$\frac{MC•sin(∠MAC+∠ACM)}{sin∠MAC}$=$\frac{21×(\frac{\sqrt{3}}{2}×\frac{1}{7}+\frac{1}{2}×\frac{4\sqrt{3}}{7})}{\frac{\sqrt{3}}{2}}$=15km.
答:汽车还需行驶15km才能到达A城.

点评 本题主要考查了正弦定理和余弦定理在实际中的应用.属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,满足Sn+1=2Sn+2n+1(n∈N*),且a1=1.
(Ⅰ)求证{an+2}是等比数列;
(Ⅱ)求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知△ABC是边长为4的正三角形,D是BC的中点,E,F分别是边AB,AC上的点,且∠EDF=$\frac{π}{3}$,设∠BDE=θ$(\frac{π}{6}<θ<\frac{π}{2})$.
(Ⅰ)试将线段DF的长表示为θ的函数;
(Ⅱ)设△DEF的面积为S,求S=f(θ)的解析式,并求f(θ)的最小值;
(Ⅲ)若将折线BE-ED-DF-FC绕直线BC旋转一周得到空间几何体,试问:该几何体的体积是否有最小值?若有,求出它的最小值;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}:$\frac{1}{1}$,$\frac{1}{2}$,$\frac{2}{1}$,$\frac{1}{3}$,$\frac{2}{2}$,$\frac{3}{1}$,…$\frac{1}{k}$,$\frac{2}{k-1}$,$\frac{3}{k-2}$,…,$\frac{k}{1}$,…,则:
(1)在这个数列中,若an是第3个值等于1的项,则n=13;
(2)a2015=31.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,$\overrightarrow{AB}=(2\;,\;\;-1)$,$\overrightarrow{AC}=(x\;,\;\;3)$,其中x为实数.若△ABC为直角三角形,则x=$\frac{3}{2}$或4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C所对的边分别为a,b,c,已知$\overrightarrow{m}$=(sinC,sinBcosA),$\overrightarrow{n}$=(b,2c),且$\overrightarrow{m}$•$\overrightarrow{n}$=0
(1)求A;
(2)若a=2$\sqrt{3}$,c=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.掷两颗骰子,出现的点数之和是6的概率为(  )
A.$\frac{5}{36}$B.$\frac{1}{12}$C.$\frac{5}{21}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.两台车床加工同一种机械零件如表:
 合格品次品总计
甲机床加工的零件数35540
乙机床加工的零件数501060
总计8515100
从这100个零件中任取一个零件,取得的零件是甲机床加工的合格品的概率是$\frac{7}{20}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.高三年级某6个班联合到集市购买了6根竹竿,作为班旗的旗杆之用,它们的长度分别为3.8,4.3,3.6,4.5,4.0,4.1(单位:米).
(1)若从中随机抽取两根竹竿,求长度之差不超过0.5米的概率;
(2)若长度不小于4米的竹竿价格为每根10元,长度小于4米的竹竿价格为每根a元.从这6根竹竿中随机抽取两根,若这两根竹竿总价的期望为18元,求a的值.

查看答案和解析>>

同步练习册答案