精英家教网 > 高中数学 > 题目详情

已知集合,集合,是否存在实数,使得集合A、B能同时满足下列三个条件:

;②;③?若存在,求出实数的值或取值范围;若不存在,请说明理由.

 

【答案】

这样的实数不存在

【解析】

试题分析:由已知条件可得,若存在,由,且,∴

,∴,∴,或

时,有,即

解得,或,此时集合,或都与矛盾;

时,同理得出矛盾,故这样的实数不存在.

考点:本题主要考查子集、集合相等、交集、并集的概念、集合中元素的性质。

点评:此题考查了集合的各种运算,探究求得a,利用集合中元素的互异性,确认其是否存在性。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={1,2,3,…,2n}(n∈N*).对于A的一个子集S,若存在不大于n的正整数m,使得对于S中的任意一对元素s1,s2,都有|s1-s2|≠m,则称S具有性质P.
(Ⅰ)当n=10时,试判断集合B={x∈A|x>9}和C={x∈A|x=3k-1,k∈N*}是否具有性质P?并说明理由.
(Ⅱ)若n=1000时
①若集合S具有性质P,那么集合T={2001-x|x∈S}是否一定具有性质P?并说明理由;
②若集合S具有性质P,求集合S中元素个数的最大值.

查看答案和解析>>

科目:高中数学 来源:2007年普通高等学校招生全国统一考试、理科数学(北京卷) 题型:044

已知集合A={a1,a2,…ax}(k≥2),其中,由中的元素构成两个相应的集合:.其中(a,b)是有序数对,集合S和T中的元素个数分别为m和n.若对于任意的,总有,则称集合A具有性质P.

(1)

检验集合{0,1,2,3}与{-1,2,3}是否具有性质P并对其中具有性质P的集合,写出相应的集合S和T;

(2)

对任何具有性质P的集合A,证明:

(3)

判断m和n的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:2014届北京市高一第一学期期末考试数学 题型:解答题

(本小题满分14分)

已知集合,若集合,且对任意的,存在,使得(其中),则称集合为集合的一个元基底.

(Ⅰ)分别判断下列集合是否为集合的一个二元基底,并说明理由;

    ①

.

(Ⅱ)若集合是集合的一个元基底,证明:

(Ⅲ)若集合为集合的一个元基底,求出的最小可能值,并写出当取最小值时的一个基底.


 

查看答案和解析>>

科目:高中数学 来源:2012届北京市海淀区高三上学期期末考试理科数学 题型:解答题

(本小题满分14分)

已知集合,若集合,且对任意的,存在,使得(其中),则称集合为集合的一个元基底.

(Ⅰ)分别判断下列集合是否为集合的一个二元基底,并说明理由;

    ①

.

(Ⅱ)若集合是集合的一个元基底,证明:

(Ⅲ)若集合为集合的一个元基底,求出的最小可能值,并写出当取最小值时的一个基底.


 

 

查看答案和解析>>

同步练习册答案