精英家教网 > 高中数学 > 题目详情
(2013•广元二模)如图,在五面体EF-ABCD中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=l,AD=2
2
,∠BAD=∠CDA=45°.
①证明:CD⊥平面ABF;
②求二面角B-EF-A的正切值.
分析:①过点B作BC∥CD,交AD于点G,可证CD⊥AB,CD⊥FA,利用线面垂直的判定定理,可得CD⊥平面ABF;
②取EF的中点N,连接GN,则GN⊥EF,过点N作NM⊥EF,交BC于M,则∠GNM为二面角B-EF-A的平面角,由此可求二面角B-EF-A的正切值.
解答:①证明:过点B作BC∥CD,交AD于点G,则∠BGA=∠CDA=45°,
由∠BAD=45°,可得BG⊥AB,从而CD⊥AB,
又FA⊥平面ABCD,∴CD⊥FA,
∵FA∩AB=A,∴CD⊥平面ABF.
②解:由上可得AG=
2
,即G为AD的中点,
取EF的中点N,连接GN,则GN⊥EF,
因为BC∥AD,所以BC∥EF,
过点N作NM⊥EF,交BC于M,则∠GNM为二面角B-EF-A的平面角,
连接GM,可得AD⊥平面GNM,故AD⊥GM,从而BC⊥GM,
由已知,可得GM=
2
2

由NG∥FA,FA⊥GM,得NG⊥GM,
在Rt△NGM中,tan∠GNM=
GM
NG
=
1
4

所以二面角B-EF-A的正切值为
1
4
点评:本题考查线面垂直,考查面面角,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•广元二模)已知各项均为正数的等比数列{an}满足a7=a6+2a5,若存在两项am,an使得
aman
=4a1,则
1
m
+
4
n
的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广元二模)已知函数f(x)=
1
3
x3-x2+ax+b
的图象在点P(0,f(0))处的切线方程为y=3x-2.
(1)求实数a,b的值;
(2)设g(x)=f(x)+
m
x-1
是[2,+∞)上的增函数.
①求实数m的最大值;
②当m取最大值时,是否存在点Q,使得过点Q的直线若能与曲线y=g(x)围成两个封闭图形,则这两个封闭图形的面积总相等?若存在,求出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广元二模)函数f(x)=
1-2log2x
的定义域为
(0,
2
]
(0,
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广元二模)已知集合M={x|(x+1)(x+2)<0},N={x||x|<1},则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广元二模)如果实数x、y满足
x-y+1≥0
y+1≥0
x+y+1≤0
,则z=x+2y
的最小值是
-4
-4

查看答案和解析>>

同步练习册答案