精英家教网 > 高中数学 > 题目详情

(本小题共14分)
在如图的多面体中,⊥平面,
中点.

(Ⅰ) 求证:平面
(Ⅱ) 求证:
(Ⅲ) 求二面角的余弦值.  



解:(Ⅰ)证明:∵
.
又∵,的中点,

∴四边形是平行四边形,
.                   ……………2分
平面平面
平面.                                …………………4分

∴四边形为正方形,
,                                ………………………7分
平面平面,
⊥平面.                        ……………………8分
平面,
.                     ………………………9分
解法2
平面平面,∴
,
两两垂直.   ……………………5分
以点E为坐标原点,分别为轴建立如图的空间直角坐标系.
由已知得,(0,0,2),(2,0,0),
(2,4,0),(0,3,0),(0,2,2),
(2,2,0).      …………………………6分
,………7分
,    ………8分
.   …………………………9分

解析

练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年广东省高州市高三上学期期末考试数学文卷 题型:解答题

(本小题共14分)

在三棱锥中,是边长为的等边三角形,分别是的中点.

(Ⅰ)求证:∥平面

(Ⅱ)求证:平面⊥平面

(Ⅲ)求三棱锥的体积.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省高州市高三上学期16周抽考数学文卷 题型:解答题

(本小题共14分)

在长方形ABEF中,D,C分别是AF和BE的中点,M和N分别是AB和AC的中点,AF=2AB=2a,将平面DCEF沿着DC折起,使角,G是DF上一动点

求证:

(1)GN垂直AC

(2)当FG=GD时,求证:GA||平面FMC。

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市海淀区高三下学期期中考试数学理卷 题型:解答题

(本小题共14分)

在如图的多面体中,⊥平面,

的中点.

(Ⅰ) 求证:平面

(Ⅱ) 求证:

(Ⅲ) 求二面角的余弦值.  

 

 

查看答案和解析>>

科目:高中数学 来源:2013届度广东省高二上学期11月月考理科数学试卷 题型:解答题

(本小题共14分)在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD底面ABCD,PD=DC,点E是PC的中点,作EFPB交PB于点F

⑴求证:PA//平面EDB

⑵求证:PB平面EFD

⑶求二面角C-PB-D的大小

 

 

 

查看答案和解析>>

同步练习册答案