精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其导函数的图象如图所示,过点

)求函数的单调递减区间和极大值点;

)求实数的值;

)若恰有两个零点,请直接写出的值.

【答案】(Ⅰ)函数的单调递减区间为,极大值点为;(Ⅱ);(Ⅲ)

【解析】

(Ⅰ)根据导函数的图象,可知当时,,即可得单调递减区间;当时,,从而可得极值点;(Ⅱ)根据极值点的定义可得:,解方程组求得结果;(Ⅲ)根据恰有两个零点,可得,从而解得结果.

(Ⅰ)由导函数的图象可得:

时,,此时函数单调递增;

时,,此时函数单调递减;

时,,此时函数单调递增

函数的单调递减区间为,极大值点为

本题正确结果:

(Ⅱ)

由题意知:,即

解得:

(Ⅲ)由(Ⅱ)可得:

由(Ⅰ)可得:为极大值点,为极小值点

恰有两个零点,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 ,点是动点,且直线和直线的斜率之积为.

(1)求动点的轨迹方程;

(2)设直线与(1)中轨迹相切于点,与直线相交于点,判断以为直径的圆是否过轴上一定点?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校研究性学习小组对该校高三学生视力情况进行调查,在高三全体名学生中随机抽取了名学生的体检表,并得到如图所示的频率分布直方图

(Ⅰ)若直方图中后四组的频数成等差数列,计算高三全体学生视力在以下的人数,并估计这名学生视力的中位数(精确到);

(Ⅱ)学习小组发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对高三全体成绩名次在前名和后名的学生进行了调查,部分数据如表1,根据表1及临界表2中的数据,能否在犯错误的概率不超过的前提下认为视力与学习成绩有关系?

年段名次

是否近视

近 视

不近视

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.84

5.024

6.635

7.879

10.83

(参考公式: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年元旦期间,某运动服装专卖店举办了一次有奖促销活动,消费每超过400元均可参加1次抽奖活动,抽奖方案有两种,顾客只能选择其中的一种.

方案一:顾客转动十二等分且质地均匀的圆形转盘(如图),转盘停止转动时指针指向哪个扇形区域,则顾客可直接获得该区域对应面额(单位:元)的现金优惠,且允许顾客转动3次.

方案二:顾客转动十二等分且质地均匀的圆形转盘(如图〕,转盘停止转动时指针若指向阴影部分,则未中奖,若指向白色区域,则顾客可直接获得40元现金,且允许顾客转动3次.

(1)若两位顾客均获得1次抽奖机会,且都选择抽奖方案一,试求这两位顾客均获得180元现金优惠的概率;

(2)若某顾客恰好获得1次抽奖机会.

①试分别计算他选择两种抽奖方案最终获得现金奖励的数学期望;

②从概率的角度比较①中该顾客选择哪一种抽奖方案更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体,过对角线作平面交棱于点,交棱于点,下列不正确的是(

A.平面分正方体所得两部分的体积相等;

B.四边形一定是平行四边形;

C.平面与平面不可能垂直;

D.四边形的面积有最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直角梯形中,分别是上的点,,且(如图①).将四边形沿折起,连接(如图②).在折起的过程中,则下列表述:

平面

②四点可能共面;

③若,则平面平面

④平面与平面可能垂直.其中正确的是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数,若当时, 的最大值为.

(1)求函数的解析式;

(2)若对任意的 ,不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,下列说法错误的是

A. 的最小值点

B. 函数有且只有1个零点

C. 存在正实数,使得恒成立

D. 对任意两个不相等的正实数,若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中.

1)若,求过点且与曲线相切的直线方程;

2)若函数有两个零点.

的取值范围;

求证: .

查看答案和解析>>

同步练习册答案