精英家教网 > 高中数学 > 题目详情

【题目】已知点是拋物线的焦点, 若点,

1)求的值;

2)若直线经过点且与交于(异于)两点, 证明: 直线与直线的斜率之积为常数.

【答案】(1;(2)证明见解析.

【解析】试题分析:(1)根据抛物线焦半径公式及点上列方程组可求得的值;(2)设,设直线的方程为,联立方程,, ,根据韦达定理可得

试题解析:(1)由抛物线定义知,,解得,又点, 代入,,解得

2)由(1)得,当直线经过点且垂直于轴时, 此时,

则直线的斜率,直线的斜率,所以.当直线不垂直于轴时, ,

则直线的斜率,同理直线的斜率,设直线的斜率为,且经过,则 直线的方程为.联立方程,, ,

所以,,

综上, 直线与直线的斜率之积为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}满足a1=2,a2=4(a3﹣a4),数列{bn}满足bn=3﹣2log2an
(1)求数列{an}和{bn}的通项公式;
(2)令cn= ,求数列{cn}的前n项和Tn
(3)若λ>0,求对所有的正整数n都有2λ2﹣kλ+2>a2nbn成立的k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:

(1)画出茎叶图

(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、极差、方差,并判断选谁参加比赛比较合适?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于下列命题
①函数y=tanx在第一象限是增函数;
②函数y=cos2( ﹣x)是偶函数;
③函数y=4sin(2x﹣ )的一个对称中心是( ,0);
④函数y=sin(x+ )在闭区间[﹣ ]上是增函数;
写出所有正确的命题的题号:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =( sinx,m+cosx), =(cosx,﹣m+cosx),且f(x)=
(1)求函数f(x)的解析式;
(2)当x∈[﹣ ]时,f(x)的最小值是﹣4,求此时函数f(x)的最大值,并求出相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设
(1)用a表示f(x)的最大值M(a);
(2)当M(a)=2时,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)当时,令 为常数,求函数的零点的个数;

(Ⅱ)若不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某出租车公司响应国家节能减排的号召,已陆续购买了140辆纯电动汽车作为运营车辆,目前我国主流纯电动汽车按续航里程数单位:公里分为3类,即类:类: 类:,该公司对这140辆车的行驶总里程进行统计,结果如下表:

类型

已行驶总里程不超过10万公里的车辆数

10

40

30

已行驶总里程超过10万公里的车辆数

20

20

20

(1)从这140辆汽车中任取一辆,求该车行驶总里程超过10万公里的概率;

(2)公司为了了解这些车的工作状况,决定抽取了14辆车进行车况分析,按表中描述的六种情况进行分层抽样,设从类车中抽取了辆车.

的值;

如果从这辆车中随机选取两辆车,求恰有一辆车行驶总里程超过10万公里的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,是等边三角形,是等腰直角三角形,,平面平面平面,点的中点,连接

(1)求证:平面

(2)若,求三棱锥的体积.

查看答案和解析>>

同步练习册答案