精英家教网 > 高中数学 > 题目详情
20.函数f(x)=m•ax+$\frac{4}{m•{a}^{x}}$.(m>0,a>0,且a≠1)为偶函数.
(1)求m的值;
(2)用定义证明f(x)在区间(0,+∞)上的单调性.

分析 (1)根据函数的奇偶性的定义求出m的值即可;(2)根据函数的单调性的定义证明即可.

解答 解:(1)f(-x)=m•a-x+$\frac{4}{m{•a}^{-x}}$=$\frac{m}{{a}^{x}}$+$\frac{4}{m}$•ax=m•ax+$\frac{4}{m•{a}^{x}}$,
∴m=$\frac{4}{m}$,解得:m=2;
(2)∵f(x)=2•ax+$\frac{2}{{a}^{x}}$,
设0<x1<x2
则f(x1)-f(x2
=2${a}^{{x}_{1}}$+$\frac{2}{{a}^{{x}_{1}}}$-2${a}^{{x}_{2}}$-$\frac{2}{{a}^{{x}_{2}}}$
=2(${a}^{{x}_{1}}$-${a}^{{x}_{2}}$)(1-$\frac{1}{{a}^{{x}_{1}{+x}_{2}}}$),
∵0<x1<x2
∴${a}^{{x}_{1}}$<${a}^{{x}_{2}}$,1-$\frac{1}{{a}^{{x}_{1}{+x}_{2}}}$>0,
∴f(x1)-f(x2)<0,
即f(x1)<f(x2),
函数f(x)在(0,+∞)递增.

点评 本题考查了函数的奇偶性和函数的单调性,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知命题p:双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1上一点P到左焦点距离为8,则P到右焦点距离为2或14;命题q:椭圆离心率越大,椭圆越趋近于圆.则下列命题中为真命题的是(  )
A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知集合A={x|1<x≤2},集合B={x|1≤x<3},则(∁RA)∩B={1}∪(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数y=3x,x∈[-1,2],则其值域是[-3,6].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若f($\frac{2}{x}$)=$\frac{1}{3{x}^{2}+1}$,则f(x)=$\frac{{x}^{2}}{12+{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.计算3lg5•2lg3=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(a)=$\frac{tan(π-α)•cos(2π-α)•sin(\frac{π}{2}+α)}{cos(-α-π)}$
(1)证明:f(α)=sinα;
(2)若f($\frac{π}{2}$-α)=-$\frac{3}{5}$,且α是第二象限角,求tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求出适合双曲线曲线方程:与双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1有公共的渐近线,且经过点A(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,设向量$\overrightarrow a=(1,2sinθ)$,$\overrightarrow b=(sin(θ+\frac{π}{3}),1)$,θ∈R.
(1)若$\overrightarrow a⊥\overrightarrow b$,求tanθ的值;
(2)若$\overrightarrow a$∥$\overrightarrow b$,且$θ∈(0,\frac{π}{2})$,求θ的值.

查看答案和解析>>

同步练习册答案