精英家教网 > 高中数学 > 题目详情

函数f(x)=sinxsin(数学公式-x)的最小正周期为


  1. A.
  2. B.
    数学公式
  3. C.
    π
  4. D.
    数学公式
C
分析:将f(x)解析式第二个因式利用诱导公式化简,再利用二倍角的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式,即可求出函数的最小正周期.
解答:f(x)=sinxsin(-x)=sinxcosx=sin2x,
∵ω=2,
∴T==π.
故选C
点评:此题考查了三角函数的周期性及其求法,涉及的知识有:诱导公式,以及二倍角的正弦函数公式,灵活运用三角函数的恒等变换将函数解析式化为一个角的正弦函数是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知角a的顶点在原点,始边与x轴的正半轴重合,终边经过点P(-3,
3
).
(1)定义行列式
.
ab
cd
.
=a•d-b•c,解关于x的方程:
.
cosxsinx
sinacosa
.
+1=0;
(2)若函数f(x)=sin(x+a)+cos(x+a)(x∈R)的图象关于直线x=x0对称,求tanx0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的图象过点(
π8
,-1).
(1)求φ;  
(2)求函数y=f(x)的周期和单调增区间;
(3)在给定的坐标系上画出函数y=f(x)在区间,[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin(ωx+?)(x∈R,ω>0,0≤?<2π)的部分图象如图,则
(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(wx+
π
2
)(w>0),其图象上相邻的两个最低点间的距离为2π.
(1)求ω的值及f(x)
(2)若a∈(-
π
3
π
2
),f(a+
π
3
)=
1
3
,求sin(2a+
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•红桥区一模)函数f(x)=sin(2ωx+
π
6
)+1(x∈R)图象的两相邻对称轴间的距离为1,则正数ω的值等于(  )

查看答案和解析>>

同步练习册答案