(08年潍坊市质检理) (12分) 已知各项均为正数的等比数列{an},公比q>1,且满足a2a4=64,a3+2是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)设,试比较An与Bn的大小,并证明你的结论.
解析:(1)………………2分
的等差中项,
解得q=2或(舍去),………………………………………………4分
………………5分
(2)由(1)得,
当n=1时,A1=2,B1=(1+1)2=4,A1<B1;
当n=2时,A2=6,B2=(2+1)2=9,A2<B2;
当n=3时,A3=14,B3=(3+1)2=16,A3<B3;
当n=4时,A4=30,B4=(4+1)2=25,A4>B4;
由上可猜想,当1≤n≤3时,An<Bn;当n≥4时,An>Bn.……………………8分
下面用数学归纳法给出证明:
①当n=4时,已验证不等式成立.
②假设n=k(k≥4)时,Ak>Bk.成立,即,
即当n=k+1时不等式也成立,
由①②知,当
综上,当时,An<Bn;当
科目:高中数学 来源: 题型:
(09年江苏百校样本分析)(10分)挑选空军飞行学员可以说是“万里挑一”,要想通过需过“五关”――目测、初检、复检、文考、政审等. 某校甲、乙、丙三个同学都顺利通过了前两关,有望成为光荣的空军飞行学员. 根据分析,甲、乙、丙三个同学能通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,通过政审关的概率均为1.后三关相互独立.
(1)求甲、乙、丙三个同学中恰有一人通过复检的概率;
(2)设通过最后三关后,能被录取的人数为,求随机变量
的期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年莆田四中一模理) (14分)
由函数确定数列
,
,若函数
的反函数
能确定数列
,
,则称数列
是数列
的“反数列”。
(1)若函数确定数列
的反数列为
,求
的通项公式;
(2)对(1)中,不等式
对任意的正整数
恒成立,求实数
的范围;
(3)设,若数列
的反数列为
,
与
的公共项组成的数列为
;求数列
前
项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com