精英家教网 > 高中数学 > 题目详情

【题目】已知函数f x=lnxgx=ex

1)若函数φ x = f x)-,求函数φ x)的单调增区间;

2)设直线l为函数的图象上一点Ax0f x0))处的切线.证明:在区间(1+∞)上存在唯一的x0,使得直线l与曲线y=gx)相切.

【答案】解:(1

2)见解析.

【解析】

1)求导函数,确定导数恒大于0,从而可得求函数的单调区间;(2)先求直线l为函数的图象上一点处的切线方程,再设直线与曲线相切于点,进而可得,再证明在区间存在且唯一即可.

1

函数的单调递增区间为

2)证明:∵

切线的方程为,即

设直线与曲线相切于点

直线的方程为,即

①-②,得

下证:在区间存在且唯一.

由(1)可知,在区间上递增.

结合零点存在性定理,说明方程必在区间上有唯一的根,这个根就是所求的唯一的.故结论成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,下列结论中正确的序号是__________.

的图象关于点中心对称,

的图象关于对称,

的最大值为

既是奇函数,又是周期函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我校甲、乙、丙三名语文老师和三名数学老师被派往某县城一中和二中支教,其中有一名语文老师和一名数学老师被派到了一中,其它老师都去二中支教,则甲与被派到同一所学校的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程4个不同的根,则实数的取值范围是

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图中(1)(2)(3)(4)为四个平面图形,表中给出了各平面图形中的顶点数边数以及区域数.



平面图形

顶点数

边数

区域数

1

3

3

2

2

8

12

6

3

6

9

5

4

10

15

7

现已知某个平面图形有1009个顶点,且围成了1006个区域,试根据以上关系确定这个平面图形的边数为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,古称“角黍”,平行四边形形状的纸片是由六个边长为的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为______;若该六面体内有一球,则该球表面积的最大值为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】体温是人体健康状况的直接反应,一般认为成年人腋下温度T(单位:)平均在之间即为正常体温,超过即为发热.发热状态下,不同体温可分成以下三种发热类型:低热:;高热:;超高热(有生命危险):.某位患者因患肺炎发热,于12日至26日住院治疗.医生根据病情变化,从14日开始,以3天为一个疗程,分别用三种不同的抗生素为该患者进行消炎退热.住院期间,患者每天上午800服药,护士每天下午1600为患者测量腋下体温记录如下:

抗生素使用情况

没有使用

使用抗生素A

使用抗生素B治疗

日期

12

13

14

15

16

17

18

19

体温(

38.7

39.4

39.7

40.1

39.9

39.2

38.9

39.0

抗生素使用情况

使用抗生素C治疗

没有使用

日期

20

21

22

23

24

25

26

体温(

38.4

38.0

37.6

37.1

36.8

36.6

36.3

I)请你计算住院期间该患者体温不低于的各天体温平均值;

II)在19—23日期间,医生会随机选取3天在测量体温的同时为该患者进行某一特殊项目a项目的检查,记X为高热体温下做a项目检查的天数,试求X的分布列与数学期望;

III)抗生素治疗一般在服药后2-8个小时就能出现血液浓度的高峰,开始杀灭细菌,达到消炎退热效果.假设三种抗生素治疗效果相互独立,请依据表中数据,判断哪种抗生素治疗效果最佳,并说明理由.

查看答案和解析>>

同步练习册答案