精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x-+a(2-ln x)(a>0),求函数f(x)的单调区间与极值点.

【答案】见解析

【解析】f(x)的定义域是(0,+∞),f′(x)=1+.

设g(x)=x2-ax+2,对于二次方程g(x)=0, 判别式Δ=a2-8.

当Δ=a2-8<0,即0<a<2时,对一切x>0都有f′(x)>0,此时f(x)在(0,+∞)上是增函数,无极值点.

当Δ=a2-8=0,即a=2时,仅对x=有f′(x)=0,对其余的x>0都有f′(x)>0,此时f(x)在(0,+∞)上也是增函数,无极值点.

当Δ=a2-8>0,即a>2时,方程g(x)=0有两个不同的实数根x1,x2,0<x1<x2.

当x变化时,f′(x),f(x)的变化情况如下表:

x

(0,x1)

x1

(x1,x2)

x2

(x2,+∞)

f′(x)

0

0

f(x)

f(x1)

f(x2)

此时f(x)在(0,)上是增加的,在()上是减少的,在(,+∞)上是增加的.x1是函数的极大值点,x2是函数的极小值点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆轴的正半轴相交于点,点为椭圆的焦点,且是边长为2的等边三角形,若直线与椭圆交于不同的两点

(1)直线的斜率之积是否为定值?若是,请求出该定值;若不是,请说明理由;

(2)求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年夏季奥运会将在巴西里约热内卢举行,体育频道为了解某地区关于

奥运会直播的收视情况,随机抽取了名观众进行调查,其中岁以上的观众有名,下面是根据

调查结果绘制的观众准备平均每天收看奥运会直播时间的频率分布表(时间:分钟)

分组







频率







将每天准备收看奥运会直播的时间不低于分钟的观众称为奥运迷,已知奥运迷中有

以上的观众.

1)根据已知条件完成下面的列联表,并据此资料你是否有以上的把握认为奥运迷与年龄

有关?


奥运迷

奥运迷

合计

岁以下




岁以上




合计




2)将每天准备收看奥运会直播不低于分钟的观众称为超级奥运迷,已知超级奥运迷中有

岁以上的观众,若从超级奥运迷中任意选取人,求至少有岁以上的观众的概率.

附:







查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是函数的两个零点,

1求实数的值;

2

①若不等式上恒成立,求实数的取值范围;

②若有三个不同的实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】张师傅想要一个如图1所示的钢筋支架的组合体,来到一家钢制品加工店定制,拿出自己画的组合体三视图(如图2所示).店老板看了三视图,报了最低价,张师傅觉得很便宜,当即甩下定金和三视图,约定第二天提货.第二天提货时,店老板一脸坏笑的捧出如图3–1所示的组合体,张师傅一看,脸都绿了:“奸商,怎能如此偷工减料”.店老板说,我是按你的三视图做的,要不我给你加一个正方体,但要加价,随机加上了一个正方体,得到如图3–2所示的组合体;张师傅脸还是绿的,店老板又加上一个正方体,组成了如图 3–3 所示的组合体,又加价;张师傅脸继续绿,店老板再加一个正方体,组成如图 3–4 所示的组合体,再次加价;双方就三视图争吵不休……

你认为店老板提供的个组合体的三视图与张师傅画的三视图一致的个数是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业通过调查问卷(满分50分)的形式对本企业900名员工的工作满意度进行调查,并随机抽取了其中30名员工(16名女员工,14名男员工)的得分,如下表:

47

36

32

48

34

44

43

47

46

41

43

42

50

43

35

49

37

35

34

43

46

36

38

40

39

32

48

33

40

34

(1)根据以上数据,估计该企业得分大于45分的员工人数;

(2)现用计算器求得这30名员工的平均得分为40.5分,若规定大于平均得分为“满意”,否则为“不满意”,请完成下列表格:

“满意”的人数

“不满意”的人数

总计

16

14

总计

30

(3)根据上述表中数据,利用独立性检验的方法判断,能否有99%的把握认为该企业员工“性别”与“工作是否满意”有关?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人玩掷骰子游戏,甲掷出的点数记为,乙掷出的点数记为

若关于的一元二次方程有两个不相等的实数根时甲胜;方程有

两个相等的实数根时为“和”;方程没有实数根时乙胜.

(1)列出甲、乙两人“和”的各种情形;

(2)求甲胜的概率.

必要时可使用此表格

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量m=(cosx,-1),n=,函数f(x)=(m+n)·m.

(1)求函数f(x)的最小正周期;

(2)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=1,c=,且f(A)恰是函数f(x)在上的最大值,求A,b和△ABC的面积.

查看答案和解析>>

同步练习册答案