精英家教网 > 高中数学 > 题目详情

已知椭圆的离心率为以原点O为圆心,椭圆的短半轴长为半径的圆与直线相切。

   (I)求椭圆C的方程;

   (II)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连结PB交椭圆C于另一点E,证明直线AE与x轴交于定点Q;

 (III)在(II)条件下,过点Q的直线与椭圆C交于M,N两点,求的取值范围。

(本小题满分13分)

       解:(I)由题意知

      

       故椭圆C的方程为……………………………………4分

   (II)由题意知直线PB的斜率存在,设直线PB的方程为

       ①…………6分

       设点

       直线AE的方程为

      

       整理,得  ②

       由①得代入②

       整理,得x=1.

       所以直线AEx轴相交于定点Q(1,0).…………………………9分

   (III)当过点Q的直线MN的斜率存在时,设直线MN的方程为,且在椭圆C上.

       由  ①

       易知△>0.

       所以

    则

       因为

       所以………………………………………………11分

       当过点Q的直线MN的斜率不存在时,其方程为x=1.

       解得

       此时

       所以的取值范围是……………………………………13分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的离心率为e,两焦点分别为F1、F2,抛物线C以F1为顶点、F2为焦点,点P为抛物线和椭圆的一个交点,若e|PF2|=|PF1|,则e的值为(  )
A、
1
2
B、
2
2
C、
3
3
D、以上均不对

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A,B是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右顶点,M是椭圆上异于A,B的任意一点,已知椭圆的离心率为e,右准线l的方程为x=m.
(1)若e=
1
2
,m=4,求椭圆C的方程;
(2)设直线AM交l于点P,以MP为直径的圆交MB于Q,若直线PQ恰过原点,求e.

查看答案和解析>>

科目:高中数学 来源:河北省正定中学高三下学期第二次考试数学(理) 题型:解答题

(本题满分12分)已知椭圆的离心率为
直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左焦点为F1,右焦点为F2,直线过点F1,且垂直于椭圆的长轴,动直线垂直于点P,线段PF2的垂直平分线交于点M,求点M的轨迹C2的方程;
(Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的离心率为以原点O为圆心,椭圆的短半轴长为半径的圆与直线相切。

   (I)求椭圆C的方程;

   (II)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连结PB交椭圆C于另一点E,证明直线AE与x轴交于定点Q;

 (III)在(II)条件下,过点Q的直线与椭圆C交于M,N两点,求的取值范围。

查看答案和解析>>

同步练习册答案