精英家教网 > 高中数学 > 题目详情

【题目】已知x1是函数f(x)ax3x2(a1)x5的一个极值点.

(1)求函数f(x)的解析式;

(2)若曲线yf(x)与直线y2xm有三个交点求实数m的取值范围.

【答案】1f(x)的解析式为f(x)x3x22x5 2m的取值范围为

【解析】试题分析:(I)利用三次函数在极值点处的导数为零,即可解得a的值,进而确定函数的解析式;(II)将两曲线有三个交点问题,转化为函数g(x)=f(x)﹣(2x+m)有三个零点问题,利用导数研究函数g(x)的单调性和极值,找到问题的充要条件,列不等式即可解得m的范围

试题解析:

解:(1)依题意f′(x)=ax2-3xa+1,

f′(1)=0a=1,

函数f(x)的解析式为f(x)=x3x2+2x+5.

(2)曲线yf(x)与直线y=2xm有三个交点

x3x2+2x+5-2xm=0有三个实数根

g(x)=x3x2+2x+5-2xmx3x2+5-mg(x)有三个零点.

g′(x)=x2-3x=0x=0x=3.

g′(x)>0x<0x>3;令g′(x)<00<x<3.

函数g(x)(-∞,0)上为增函数(0,3)上为减函数(3,+∞)上为增函数.

函数在x=0处取得极大值x=3处取得极小值.

要使g(x)有三个零点只需 解得 <m<5.

实数m的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设{an}是由正数组成的等比数列,公比q=2,且a1a2a3…a30=230 , 那么a3a6a9…a30等于(
A.210
B.220
C.216
D.215

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求的最小正周期;

(Ⅱ)若在区间上的最大值与最小值的和为2,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为菱形, 相交于点 平面 平面 中点.

(Ⅰ)求证: 平面

(Ⅱ)求二面角的正弦值;

(Ⅲ)当直线与平面所成角为时,求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求处的切线方程;

(Ⅱ)若且函数有且仅有一个零点,求实数的值;

(Ⅲ)在(Ⅱ)的条件下,若时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明计划在811日至820日期间游览某主题公园,根据旅游局统计数据,该主題公园在此期间“游览舒适度”(即在园人数与景区主管部门核定的最大瞬时容量之比, 以下为舒适, 为一般, 以上为拥挤),情况如图所示,小明随机选择8月11日至8月19日中的某一天到达该主题公园,并游览.

(1)求小明连续两天都遇上拥挤的概率;

(2)设是小明游览期间遇上舒适的天数,求的分布列和数学期望;

(3)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在正方形中,点分别是的中点,交于点,点分别在线段上,且.将分别沿折起,使点重合于点,如图2所示.

(1)求证:平面

(2)若正方形的边长为4,求三棱锥的内切球的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中石化集团获得了某地深海油田块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料,进入全面勘探时期后,集团按网络点米布置井位进行全面勘探,由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口断井,以节约勘探费用,勘探初期数据资料见下表:

井号

坐标

钻探深度

出油量

(1)号旧井位置线性分布,借助前5组数据求得回归直线方程为,求,并估计的预报值;

(2)现准备勘探新井,若通过号并计算出的的值(精确到)与(1)中的值差不超过,则使用位置最接近的已有旧井,否则在新位置打开,请判断可否使用旧井?

(参考公式和计算结果:

(3)设出油量与勘探深度的比值不低于20的勘探井称为优质井,那么在原有口井中任意勘探口井,求勘探优质井数的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn=n2+pn+q(p,q∈R),且a2 , a3 , a5成等比数列.
(1)求p,q的值;
(2)若数列{bn}满足an+log2n=log2bn , 求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案