精英家教网 > 高中数学 > 题目详情

已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[-1,4]上的最大值是12.
(Ⅰ)求f(x)的解析式;
(Ⅱ)解关于x的不等式数学公式

解(I)∵f(x)是二次函数,且f(x)<0的解集是(0,5)
∴可设f(x)=Ax(x-5)(A>0),(2分)
∴f(x)的对称轴为且开口向上.
∴f(x)在区间[-1,4]上的最大值是f(-1)=6A=12.∴A=2.
∴f(x)=2x(x-5)=2x2-10x.(4分)
(Ⅱ)由已知有
∴x(x-5)(ax+5)>0.
又a<0,∴.(6分)
(i)若-1<a<0,则,∴x<0或.(8分)
(ii)若a=-1,则x<0.(9分)
(iii)若a<-1,则
∴x<0或.(11分)
综上知:
当-1<a<0时,原不等式的解集为
当a=-1时,原不等式的解集为{x|x<0};
当a<-1时,原不等式的解集为.(12分)
分析:(Ⅰ)先根据f(x)<0的解集是(0,5)设f(x)=Ax(x-5)(A>0),再结合在区间[-1,4]上的最大值是12求出A.即可得到结论;
(Ⅱ)先把不等式转化;进而得到x(x-5)(ax+5)>0;再通过讨论几个根的大小即可得到不等式的解集.
点评:本题考查不等式的解法,考查转化思想,分类讨论思想,是基础题.一元二次不等式的解集的区间端点值为对应方程的根.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2mx+1,若对于[0,1]上的任意三个实数a,b,c,函数值f(a),f(b),f(c)都能构成一个三角形的三边长,则满足条件的m的值可以是
(0<m<
2
2
内的任一实数)
(0<m<
2
2
内的任一实数)
.(写出一个即可)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c,且函数y=f(x+3)为偶函数,则在函数值f(-1)、f(2)、f(5)、f(7)中,最大的一个不可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知二次函数f(x)=x2-2mx+1,若对于[0,1]上的任意三个实数a,b,c,函数值f(a),f(b),f(c)都能构成一个三角形的三边长,则满足条件的m的值可以是________.(写出一个即可)

查看答案和解析>>

科目:高中数学 来源:2009年浙江省温州市摇篮杯高一数学竞赛试卷(解析版) 题型:填空题

已知二次函数f(x)=x2-2mx+1,若对于[0,1]上的任意三个实数a,b,c,函数值f(a),f(b),f(c)都能构成一个三角形的三边长,则满足条件的m的值可以是    .(写出一个即可)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆外国语学校高一(上)期末数学试卷(解析版) 题型:选择题

已知二次函数f(x)=ax2+bx+c,且函数y=f(x+3)为偶函数,则在函数值f(-1)、f(2)、f(5)、f(7)中,最大的一个不可能是( )
A.f(-1)
B.f(2)
C.f(5)
D.f(7)

查看答案和解析>>

同步练习册答案