精英家教网 > 高中数学 > 题目详情
曲线f(x)=x2•(x-2)+1在点(1,f(1))处的切线方程为
 
考点:利用导数研究曲线上某点切线方程
专题:计算题,导数的概念及应用
分析:求出函数的导数,求得切线的斜率,和切点坐标,再由点斜式方程,即可得到所求切线方程.
解答: 解:f(x)=x2•(x-2)+1的导数为f′(x)=3x2-4x,
在点(1,f(1))处的切线斜率为3-4=-1,
切点为(1,0),
则在点(1,f(1))处的切线方程为y-0=-(x-1),
即为x+y-1=0.
故答案为:x-y+1=0.
点评:本题考查导数的运用:求切线方程,运用导数的几何意义和点斜式方程是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a=
1
2
2
1
1
x
dx,b=
1
3
3
1
1
x
dx,c=
1
5
5
1
1
x
dx,则下列关系式成立的是(  )
A、a<b<c
B、b<a<c
C、a<c<b
D、c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:

确定三角函数式
tan(-3)cos5
sin8
的符号.

查看答案和解析>>

科目:高中数学 来源: 题型:

当x∈(0,
π
2
)时,函数f(x)=tx-sinx(t∈R)的值恒小于0,则t的取值范围是(  )
A、t≤
2
π
B、t≤
π
2
C、t≥
2
π
D、t<
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知A=120°,S△ABC=
3
,设O为△ABC的外心,当BC=
21
时,求
AO
BC
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线x2=ky与曲线y=lnx的公共切线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

记A=logsin1cos1,B=logsin1tan1,C=logcos1sin1,D=logcos1tan1,则A、B、C、D四个数中最大数与最小值之和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a是锐角,求证:cos(sina)>sin(cosa).

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xoy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知某圆的极坐标方程为:p2-4pcosθ+2=0
(1)将极坐标方程化为普通方程
(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.

查看答案和解析>>

同步练习册答案