精英家教网 > 高中数学 > 题目详情
1.解不等式$\frac{x-a}{1-x}$>0.

分析 要求的不等式即(x-1)(x-a)<0,分类讨论求得它的解集.

解答 解:不等式$\frac{x-a}{1-x}$>0,即 $\frac{x-a}{x-1}$<0,即 (x-1)(x-a)<0.
当a=1时,不等式的解集为∅;当a>1时,不等式的解集为(1,a);
当a=1时,不等式的解集为(a,1).

点评 本题主要考查分式不等式的解法,体现了等价转化和分类讨论的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设a>2b>0,则(a-b)2+$\frac{9}{b(a-2b)}$的最小值是(  )
A.12B.9C.6D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=Asin(x+φ)(A>0且ω>0,0<φ<$\frac{π}{2}$)的部分图象,如图所示.
(1)求函数解析式;
(2)若方程f(x)=a,在(0,$\frac{5π}{3}$)上有两个不同的实根,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\sqrt{3}$,过点M$(2,\sqrt{6})$
(Ⅰ)求双曲线C的方程;
(Ⅱ)对称轴为x轴的标准抛物线w过M点,是否存在斜率为1的直线L与此抛物线W有公共点,且M点到此直线L 的距离为$\sqrt{2}$?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列三个命题:
(1)变量y与x回归直线方程是表示y与x之间真实关系的一种效果最好的拟合.
(2)残差平方和越小的模型,拟合的效果越好.
(3)用相关指数R2来刻画回归的效果时,R2的值越小,说明模型拟合的效果越好.
其中真命题的个数有(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数y=f(x)在区间(a,b)上的导函数为f′(x),f′(x)在区间(a,b)上的导函数为f″(x),若区间(a,b)上f″(x)>0,则称函数f(x)在区间(a,b)上为“凹函数”,已知f(x)=$\frac{1}{20}$x5-$\frac{1}{12}$mx4-2x2在(1,3)上为“凹函数”,则实数m的取值范围是(  )
A.(-∞,$\frac{23}{9}$]B.(-∞,-3)C.(-∞,-3]D.(-3,$\frac{23}{9}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.直线xcosα+ysinα=0的极坐标方程为$θ=α-\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知曲线C的参数方程为$\left\{{\begin{array}{l}{x=\sqrt{5}cosθ}\\{y=sinθ}\end{array}}\right.$(θ为参数),直线l的极坐标方程为$ρcosθ=\sqrt{5}$,它们的交点在平面直角坐标系中的坐标为$({\sqrt{5},0})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某几何体的三视图如图所示,P是正方形ABCD对角线的交点,G是PB的中点.
(1)根据三视图,画出该几何体的直观图;
(2)在直观图中,①证明PD∥面AGC;②求此几何体的侧面积.

查看答案和解析>>

同步练习册答案