【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各随机抽取了100件产品作为样本来检测一项质量指标值,若产品的该项质量指标值落在内,则为合格品,否则为不合格品.表1是甲套设备的样本的频数分布表,图是乙套设备的样本的频率分布直方图.
表甲套设备的样本的频数分布表
质量指标值 | ||||||
频数 | 2 | 10 | 36 | 38 | 12 | 2 |
(1)将频率视为概率.若乙套设备生产了10000件产品,则其中的合格品约有多少件?
(2)填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下,认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关.
甲套设备 | 乙套设备 | 合计 | |
合格品 | |||
不合格品 | |||
合计 |
附表及公式:,其中;
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)8600件;(2)列联表见解析,不能在犯错误的概率不超过0.01的前提下可以认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关.
【解析】
(1)计算出不合格品率,和不合格品件数,由此求得合格品件数.(2)根据题目所给表格和图像数据,填写好联表,计算出的值,由此判断出“不能在犯错误的概率不超过0.01的前提下可以认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关.”
解:(1)由题图1知,乙套设备生产的不合格品的概率约为,
∴乙套设备生产的10000件产品中不合格品约为(件),
故合格品的件数为(件).
(2)由题中的表1和图1得到2×2列联表如下:
甲套设备 | 乙套设备 | 合计 | |
合格品 | 96 | 86 | 182 |
不合格品 | 4 | 14 | 18 |
合计 | 100 | 100 | 200 |
将2×2列联表中的数据代入公式计算得的观测值,
因为6.105<6.635,
所以不能在犯错误的概率不超过0.01的前提下可以认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关.
科目:高中数学 来源: 题型:
【题目】设集合A={x|(x-3)(x+a)<0,a∈R},集合B={x∈Z|x2-3x-4<0}.
(1)若A∩B的子集个数为4,求a的范围;
(2)若a∈Z,当A∩B≠时,求a的最小值,并求当a取最小值时A∪B.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,是锐角,大小为β.图中阴影区域的面积的最大值为
A. 4β+4cosβB. 4β+4sinβC. 2β+2cosβD. 2β+2sinβ
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面,,,,
(Ⅰ)设分别为的中点,求证:平面;
(Ⅱ)求证:平面;
(Ⅲ)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】天津大学某学院欲安排4名毕业生到某外资企业的三个部门实习,要求每个部门至少安排1人,其中甲大学生不能安排到部门工作的方法有_______种(用数字作答).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【选修4-4:坐标系与参数方程】
在平面直角坐标系中,曲线的参数方程为: (为参数, ),将曲线经过伸缩变换: 得到曲线.
(1)以原点为极点, 轴的正半轴为极轴建立坐标系,求的极坐标方程;
(2)若直线(为参数)与相交于两点,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,侧棱底面,底面为长方形,且,是的中点,作交于点.
(1)证明:平面;
(2)若三棱锥的体积为,求直线与平面所成角的正弦值;
(3)在(2)的条件下,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正三棱柱(底面是正三角形,侧棱垂直底面)的各条棱长均相等,为的中点.、分别是、上的动点(含端点),且满足.当运动时,下列结论中正确的是______ (填上所有正确命题的序号).
①平面平面;
②三棱锥的体积为定值;
③可能为直角三角形;
④平面与平面所成的锐二面角范围为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】分形几何学是一门以不规则几何形态为研究对象的几何学.分形的外表结构极为复杂,但其内部却是有规律可寻的.一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.下面我们用分形的方法来得到一系列图形,如图1,线段的长度为a,在线段上取两个点,,使得,以为一边在线段的上方做一个正六边形,然后去掉线段,得到图2中的图形;对图2中的最上方的线段作相同的操作,得到图3中的图形;依此类推,我们就得到了以下一系列图形:
记第个图形(图1为第1个图形)中的所有线段长的和为,现给出有关数列的四个命题:
①数列是等比数列;
②数列是递增数列;
③存在最小的正数,使得对任意的正整数 ,都有 ;
④存在最大的正数,使得对任意的正整数,都有.
其中真命题的序号是________________(请写出所有真命题的序号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com