精英家教网 > 高中数学 > 题目详情

【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

频数

10

20

16

16

15

13

10

以100天记录的各需求量的频率作为各需求量发生的概率.
(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;
(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.

【答案】
(1)解:当n≥16时,y=16×(10﹣5)=80;

当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:


(2)解:(i)X可取60,70,80,当日需求量n=14时,X=60,n=15时,X=70,其他情况X=80,

P(X=60)= = =0.1,P(X=70)= 0.2,P(X=80)=1﹣0.1﹣0.2=0.7,

X的分布列为

X

60

70

80

P

0.1

0.2

0.7

EX=60×0.1+70×0.2+80×0.7=76

DX=162×0.1+62×0.2+42×0.7=44

(ii)购进17枝时,当天的利润的期望为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4

∵76.4>76,∴应购进17枝


【解析】(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)(i)X可取60,70,80,计算相应的概率,即可得到X的分布列,数学期望及方差;(ii)求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在多面体ABCDEF中,四边形ABCD是正方形,EF∥AB,EF⊥FB,AB=2EF,∠BFC=90°,BF=FC,H为BC的中点.

(1)求证:FH∥平面EDB;
(2)求证:AC⊥平面EDB;
(3)解:求二面角B﹣DE﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知偶函数f(x)的定义域为R,且在(﹣∞,0)上是增函数,则f(﹣ )与f(a2﹣a+1)的大小关系为(
A.f(﹣ )<f(a2﹣a+1)
B.f(﹣ )>f(a2﹣a+1)??
C.f(﹣ )≤f(a2﹣a+1)
D.f(﹣ )≥f(a2﹣a+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

)当时,求曲线在点处的切线方程

(Ⅱ)求在区间上的最小值.(其中是自然对数的底数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=ax(a>1),
(1)求函数f(x)的解析式;
(2)若不等式f(x)≤4的解集为[﹣2,2],求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆,椭圆 为椭圆的右顶点,过原点且异于轴的直线与椭圆交于两点, 轴的上方,直线与圆的另一交点为,直线与圆的另一交点为

(1)若,求直线的斜率;

(2)设的面积分别为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足:a1= ,前n项和Sn= an
(1)写出a2 , a3 , a4
(2)猜出an的表达式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AF=BF,EC∥FD,FD⊥底面ABCD,M是AB的中点.
(1)求证:平面CFM⊥平面BDF;
(2)点N在CE上,EC=2,FD=3,当CN为何值时,MN∥平面BEF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,将一半径为2的半圆形纸板裁剪成等腰梯形ABCD的形状,下底AB是半圆的直径,上底CD的端点在圆周上,则所得梯形面积的最大值为(  )

A. 3 B. 3 C. 5 D. 5

查看答案和解析>>

同步练习册答案