精英家教网 > 高中数学 > 题目详情
函数f(x)=sinx-
3
cosx-tx在[0,π]上单调递减,则实数t的取值范围是
 
考点:三角函数中的恒等变换应用
专题:导数的概念及应用
分析:求出函数f(x)的导数f′(x)=cosx+
3
sinx-t,函数f(x)在[0,π]上单调递增可转化为f′(x)≤0,即cosx+
3
sinx-t≥0在区间[0,π]上恒成立,变成求函数的最值问题即可求解.
解答: 解:∵函数f(x)=sinx-
3
cosx-tx在[0,π]上单调递减,
∴函数f(x)的导数f′(x)≤0,在区间[0,π]上恒成立,
求得f′(x)=cosx+
3
sinx-t,
所以cosx+
3
sinx-t≤0在区间[0,π]上恒成立
即t≥cosx+
3
sinx对x∈[0,π]总成立,
记函数g(x)=cosx+
3
sinx=2sin(x+
π
6
),易求得g(x)在[0,π]的最大值为2,
从而t≥2,
故答案为:[2,+∞).
点评:利用导数工具讨论函数的单调性,是求函数的值域和最值,从而得出参数t的取值范围,是解决此种问题的常用方法,解决本题同时应注意研究导函数的单调性得出导数的正负,从而得出原函数的单调性的技巧,本题属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个结论:
(1)如图Rt△ABC中,|AC|=2,∠B=90°,∠C=30°.D是斜边AC上的点,|CD|=|CB|.以B为起点任作一条射线BE交AC于E点,则E点落在线段CD上的概率是
3
2

(2)设某大学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的线性回归方程为
y
=0.85x-85.71,则若该大学某女生身高增加1cm,则其体重约增加0.85kg;
(3)为调查中学生近视情况,测得某校男生150名中有80名近视,在140名女生中有70名近视.在检验这些学生眼睛近视是否与性别有关时,应该用独立性检验最有说服力;
(4)已知随机变量ξ服从正态分布N(1,σ2),P(ξ≤4)=0.79,则P(ξ≤-2)=0.21;其中正确结论的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,an=(
2
3
n-1[(
2
3
n-1-1](n∈N*),求数列{an}的最大项与最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程ax3-3x2+1=0正实数解有且仅有一个,则实数a的取值范围是(  )
A、{a|a≤0}
B、{a|a≤0或a=2}
C、{a|a≥0}
D、{a|a≥0或a=-2}

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=6lnx+ax2-10ax+25a,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).
(1)求a的值;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知以下4个命题:
①若p∨q为真命题,则p∧q为真命题;
②若p:?x∈R,x2-3x-2<0,则¬q:?x∈R,x2-3x-2≥0;
③设a,b∈R,则a>b是(a-1)|a|>(b-1)|b|成立的充分不必要条件;
④若关于实数x的不等式|1-2x|+|1+3x|<a|x|无解,则实数a的取值范围是(-∞,5].
其中正确命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱柱ABC-A1B1C1的底面边长是2,侧棱长为4,M、N分别是A1B1,CC1中点,则AN与BM所成角的余弦值为(  )
A、
2
3
B、
6
4
C、
7
34
68
D、
5
34
68

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c为△ABC的内角A,B,C的对边,且b<a<c,满足
sinB+sinC
sinA
=
2-cosB-cosC
cosA
,函数f(x)=sinωx(ω>0)在区间[0,
π
3
]上单调递增,在区间[
π
3
π
2
]上单调递减.
(1)证明:b,a,c成等差数列;
(2)若f(
π
9
)=cosA,且a=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinx=
2
3
,cosy=-
3
4
,且x、y都是第二象限角,求sin(x+y)及sin(x-y)的值.

查看答案和解析>>

同步练习册答案