精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 )过点 分别为其左、右焦点, 为坐标原点,点为椭圆上一点, 轴,且的面积为.

(Ⅰ)求椭圆的离心率和方程;

(Ⅱ)设是椭圆上两动点,若直线的斜率为,求面积的最大值.

【答案】(Ⅰ);(Ⅱ) .

【解析】试题分析:的面积为,得,结合即可;

设直线的方程为,与联立 到直线的距离为,结合韦达定理得,用均值不等式求最值即可.

试题解析:

(Ⅰ)因为椭圆 )过点,所以,由轴,且的面积为,得,所以,即离心率.

因为,所以

解得(舍负),故椭圆的方程为.

(Ⅱ)设直线的方程为,与联立,

消去,整理得

,得

易知点到直线的距离为

的面积

当且仅当,即时取“”,经检验,满足要求,

面积的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若把函数y=sin(ωx﹣ )的图象向左平移 个单位,所得到的图象与函数y=cosωx的图象重合,则ω的一个可能取值是(
A.2
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)= 是奇函数.
(1)求b的值;
(2)用定义法证明函数f(x)在R上是减函数;
(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校设有甲、乙两个实验班,为了了解班级成绩,采用分层抽样的方法从甲、乙两班学生中分别抽取8名和6名测试他们的数学与英语成绩(单位:分),用表示,下面是乙班6名学生的测试分数: ,当学生的数学、英语成绩满足,且时,该学生定为优秀生.

(Ⅰ)已知甲班共有80名学生,用上述样本数估计乙班优秀生的数量;

(Ⅱ)从乙班抽出的上述6名学生中随机抽取3名,求至少有两名为优秀生的概率;

(Ⅲ)从乙班抽出的上述6名学生中随机抽取2名,其中优秀生数记为,求的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p(万元)和宿舍与工厂的距离x(km)的关系为:p= (0≤x≤8),若距离为1km时,宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元,设f(x)为建造宿舍与修路费用之和.
(1)求f(x)的表达式,并写出其定义域;
(2)宿舍应建在离工厂多远处,可使总费用f(x)最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知角A,B,C所对的三条边分别是a,b,c,且
(1)求角B的大小;
(2)若 ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线,抛物线 有公共的焦点 在第一象限的公共点为,直线的倾斜角为,且,则关于双曲线的离心率的说法正确的是()

A. 仅有两个不同的离心率 B. 仅有两个不同的离心率 C. 仅有一个离心率 D. 仅有一个离心率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1:(1+4k)x﹣(2﹣3k)y+(2﹣14k)=0,圆C:x2+y2﹣6x﹣8y+9=0.
(1)判断直线l1与圆的位置关系,并证明你的结论;
(2)直线l2过直线l1的定点且l1⊥l2 , 若l1与圆C交与A,B两点,l2与圆C交与E,F两点,求AB+EF的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知Sn为数列{an}的前n项和,an>0,an2+2an=4Sn﹣1.
(1)求{an}的通项公式;
(2)设bn= ,求{bn}的前n项和Tn
(3)cn= ,{cn}的前n项和为Dn , 求证:Dn

查看答案和解析>>

同步练习册答案