精英家教网 > 高中数学 > 题目详情
定义域为R的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上单调递增,设a=f(3),b=f(
3
2
),c=f(2),则a,b,c的大小关系为(  )
分析:根据函数f(x)满足f(x+1)=-f(x),可得f(x+2)=f(x),利用偶函数在[-1,0]上单调递增,可得函数在[0,1]上单调递减,由此可得结论.
解答:解:∵偶函数在[-1,0]上单调递增,
∴函数在[0,1]上单调递减
∵函数f(x)满足f(x+1)=-f(x),
∴f(x+2)=-f(x+1)=f(x)
∵a=f(3),b=f(
3
2
),c=f(2),
∴a=f(1),b=f(
1
2
),c=f(0),
∴c>a>b
故选A.
点评:本题考查函数单调性与奇偶性的结合,考查学生分析解决问题的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义域为R的偶函数f(x)在[0,+∞)上是增函数,且f(
1
2
)=0
,则不等式f(log4x)>0的解集是
(  )
A、x|x>2
B、{x|0<x<
1
2
}
C、{x|0<x<
1
2
或x>2}
D、{x|
1
2
<x<1或x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的偶函数f(x)满足对?∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18,若方程f(x)=loga(x+1)在(0,+∞)上恰有三个不同的根,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•鹰潭一模)定义域为R的偶函数f(x)满足对?x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18,若函数y=f(x)-loga(|x|+1)在(0,+∞)上至多三个零点,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的偶函数f(x)在(0,+∞)上是增函数,且f(
1
2
)=0,则不等式f(log2x)>0的解是
(0,
2
2
)∪(
2
,+∞)
(0,
2
2
)∪(
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区一模)已知定义域为R的偶函数f(x)在(-∞,0]上是减函数,且f(
12
)=2,则不等式f(2x)>2的解集为
(-1,+∞)
(-1,+∞)

查看答案和解析>>

同步练习册答案