精英家教网 > 高中数学 > 题目详情
对定义在[-1,1]上的函数f(x),若存在常数A>0,使得对任意x1、x2∈[-1,1],都有|f(x1)-f(x2)|≤A·|x1-x2|,则称f(x)具有性质L.问函数f(x)=x2+3x+5与g(x)=|是否具有性质L?试证明之.

思路分析:要确定一个函数具有性质L,其关键是要能找到满足题设条件中的常数A,而要确定一个函数不具有性质L,则一般需通过反证法来证明或寻找一个反例.

解析:(1)对于f(x)=x2+3x+5,任取x1、x2∈[-1,1],

|f(x1)-f(x2)|=|x12-x22+3(x1-x2)|=|(x1-x2)(x1+x2+3)|

=|x1-x2|·|x1+x2+3|

≤|x1-x2|·(|x1|+|x2|+3)

≤5|x1-x2|.

∴存在A=5,使f(x)具有性质L.

(2)对于g(x)=,设它具有性质L,任取x1、x2∈[0,1],则|g(x1)-g(x2)|=|-|

=≤A|x1-x2|,

∴A≥,

≤2.

∈(0,2].取x1=≤1,x2=,有,与矛盾,故g(x)=不具有性质L


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•黄冈模拟)定义在R上的偶函数y=f(x)满足:
①对x∈R都有f(x+6)=f(x)+f(3)
②f(-5)=-1;
③当x1,x2∈[0,3]且x1≠x2时,都有
f(x1)-f(x2)x1-x2
>0则
(1)f(2009)=
-1
-1

(2)若方程f(x)=0在区间[a,6-a]上恰有3个不同实根,实数a的取值范围是
(-9,-3]
(-9,-3]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2003•北京)设y=f(x)是定义在区间[-1,1]上的函数,且满足条件:(i)f(-1)=f(1)=0;(ii)对任意的u,v∈[-1,1],都有|f(u)-f(v)|≤|u-v|.
(Ⅰ)证明:对任意的x∈[-1,1],都有x-1≤f(x)≤1-x;
(Ⅱ)判断函数g(x)=
1+x,x∈[-1,0)
1-x,x∈[0,1]
是否满足题设条件;
(Ⅲ)在区间[-1,1]上是否存在满足题设条件的函数y=f(x),且使得对任意的u,v∈[-1,1],都有|f(u)-f(v)|=u-v.
若存在,请举一例:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省高三上学期第三次月考数学文卷 题型:解答题

(12分)对定义在[0, 1]上并且满足下列两个条件的函数称为G函数。①对任意的,②成立。已知是定义在[0, 1]上的函数。

(1)问是否为G函数,说明理由;

(2)若是G函数,求实数m取值的范围。

 

查看答案和解析>>

科目:高中数学 来源:北京 题型:解答题

设y=f(x)是定义在区间[-1,1]上的函数,且满足条件:(i)f(-1)=f(1)=0;(ii)对任意的u,v∈[-1,1],都有|f(u)-f(v)|≤|u-v|.
(Ⅰ)证明:对任意的x∈[-1,1],都有x-1≤f(x)≤1-x;
(Ⅱ)判断函数g(x)=
1+x,x∈[-1,0)
1-x,x∈[0,1]
是否满足题设条件;
(Ⅲ)在区间[-1,1]上是否存在满足题设条件的函数y=f(x),且使得对任意的u,v∈[-1,1],都有|f(u)-f(v)|=u-v.
若存在,请举一例:若不存在,请说明理由.

查看答案和解析>>

同步练习册答案