精英家教网 > 高中数学 > 题目详情

【题目】设A1 , A2 , A3 , …,An是集合{1,2,3,…,n}的n个非空子集(n≥2),定义aij= ,其中i,j=1,2,…,n,这样得到的n2个数之和记为S(A1 , A2 , A3 , …,An),简记为S,下列三种说法:①S与n的奇偶性相同;②S是n的倍数;③S的最小值为n,最大值为n2 . 其中正确的判断是(
A.①②
B.①③
C.②③
D.③

【答案】B
【解析】解:把aij按其脚注排成一个数阵的话,如下,对角线上全是1,对角线外,1成对出现,如下:

1)a11=a22=…=ann=1;
2)当i≠j时,若aij=1,则aij=1;
若aij=0,则aij=0;
即对角线上全是1,对角线外,1成对出现,
所以,S=n+2k,k是某一个非负整数,
即:S与n的奇偶性一致,且S最小值是n,
又因为,当A1=A2=…=An时,S=n2
故①③是正确的.
故选:B.
【考点精析】本题主要考查了集合的表示方法-特定字母法的相关知识点,需要掌握①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{|具有的性质},其中为集合的代表元素.④图示法:用数轴或韦恩图来表示集合才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设p:关于x的不等式ax>1的解集是{x|x<0};q:函数 的定义域为R.若p∨q是真命题,p∧q是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两个小组各10名学生的英语口语测试成绩如下(单位:分).

甲组:76,90,84,86,81,87,86,82,85,83 乙组:82,84,85,89,79,80,91,89,79,74

现从这20名学生中随机抽取一人,将抽出的学生为甲组学生记为事件A;“抽出学生的英语口语测试成绩不低于85记为事件B,则P(AB)、P(A|B)的值分别是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在R上的函数,对R都有,且当0时,<0,=1.

(1)求的值

(2)求证:为奇函数;

(3)求在[-2,4]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面给出的命题中:

(1)“双曲线的方程为”是“双曲线的渐近线为”的充分不必要条件;

(2)“”是“直线与直线互相垂直”的必要不充分条件;

(3)已知随机变量服从正态分布,且,则

(4)已知圆,圆,则这两个圆有3条公切线.

其中真命题的个数为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱ABCD﹣A1B1C1D1底面是边长为1的正方形,高AA1= ,点A是平面α内的一个定点,AA1与α所成角为 ,点C1在平面α内的射影为P,当四棱柱ABCD﹣A1B1C1D1按要求运动时(允许四棱柱上的点在平面α的同侧或异侧),点P所经过的区域的面积=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)若的极值点,求的值;

(2)求函数的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划在迎春节联欢会中设一项抽奖活动:在一个不透明的口袋中装入外形一样号

码分别为1,2,3,…,10的十个小球。活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖,奖金30元;三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金。

(1)求员工甲抽奖一次所得奖金ξ的分布列与期望;

(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设为三角形的三边,求证:

查看答案和解析>>

同步练习册答案