精英家教网 > 高中数学 > 题目详情

设椭圆的左、右顶点分别为,离心率.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且.

(1)求椭圆的方程;

(2)求动点C的轨迹E的方程;

(3)设直线MN过椭圆的右焦点与椭圆相交于M、N两点,且 ,求直线MN的方程.

 

【答案】

(1);(2) ;(3).

【解析】

试题分析:(1)要求椭圆的方程,就要知道a,b,由点A知道a=,由离心率可求得c,由a2=b2+c2进而求出b=1;(2)求动点的轨迹方程,首先设,利用用C点表示P点坐标, ,代入椭圆方程,从而得到动点C的轨迹;(3)直线MN被椭圆截得的弦长,直线MN斜率分两种情况,斜率存在和斜率不存在,斜率不存在是,直线MN方程为x=1, ,舍掉,斜率存在式,设直线MN的方程为,联立直线和椭圆方程,利用根与系数关系和可以求出k.

试题解析:(1)由题意可得,

∴椭圆的方程为

(2)设,由题意得,即

,代入得,即,

即动点的轨迹的方程为

(3) 若直线MN的斜率不存在,则方程为,所以,

∴直线MN的斜率存在,设为k,直线MN的方程为

,得,

,

设M ,则

解得.

故直线MN的方程为.

考点:1.椭圆;2.动点轨迹;3.求直线方程.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
短轴长为2,P(x0,y0)(x0≠±a)是椭圆上一点,A,B分别是椭圆的左、右顶点,直线PA,PB的斜率之积为-
1
4

(1)求椭圆的方程;
(2)当∠F1PF2为钝角时,求P点横坐标的取值范围;
(3)设F1,F2分别是椭圆的左右焦点,M、N是椭圆右准线l上的两个点,若
F1M
F2N
=0
,求MN的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1的方程为
x24
+y2=1
,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点.
(1)求双曲线C2的方程;
(2)设过定点M(0,2)的直线l与椭圆C1交于不同的两点A、B,且满足|OA|2+|OB|2>|AB|2,(其中O为原点),求l斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆=1(a>b>0),其右准线l与x轴交于点A,椭圆的上顶点为B,过它的右焦点F且垂直于长轴的直线交椭圆于点P,直线AB恰经过线段FP的中点D.

(Ⅰ)求椭圆的离心率;

(Ⅱ)设椭圆的左、右顶点分别是A1、A2,且=-3,求椭圆方程;

(Ⅲ)在(Ⅱ)的条件下,设Q是椭圆右准线l上异于A的任意一点,直线QA1、QA2与椭圆的另一个交点分别为M、N,求证:直线MN与x轴交于定点.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12分)

已知椭圆的焦点在轴上,中心在原点,离心率,直线和以原点为圆心,椭圆的短半轴为半径的圆相切.

(Ⅰ)求椭圆的方程;

(Ⅱ)设椭圆的左、右顶点分别为,点是椭圆上异于的任意一点,设直线的斜率分别为,证明为定值;

(Ⅲ)设椭圆方程为长轴两个端点, 为椭圆上异于的点, 分别为直线的斜率,利用上面(Ⅱ)的结论得(        )(只需直接写出结果即可,不必写出推理过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

.(2012年高考天津卷理科19)(本小题满分14分)设椭圆的左、右顶点分别为,点P在椭圆上且异于

两点,为坐标原点.

(Ⅰ)若直线的斜率之积为,求椭圆的离心率;

(Ⅱ)若,证明:直线的斜率满足.

查看答案和解析>>

同步练习册答案