精英家教网 > 高中数学 > 题目详情
(2011•海淀区二模)若x(1-mx)4=a1x+a2x2+a3x3+a4x4+a5x5,其中a2=-6,则实数m的值为
3
2
3
2
; a1+a2+a3+a4+a5的值为
1
16
1
16
分析:利用二项展开式的通项求出(1-mx)4中x的指数为1的系数,然后求出m的值;在展开式中给x赋值1求出展开式的系数和.
解答:解:由题意(1-mx)4的展开式的通项为Tr+1=(-m)rC4rxr
令r=1得a2=-4m,因为a2=-6,所以-6=-4m,
解得m=
3
2

在展开式中令x=1得(1-
3
2
4=a1+a2+a3+a4+a5
1
16
=a1+a2+a3+a4+a5
故答案为:
3
2
1
16
点评:本题考查利用二项展开式的通项公式解决二项展开式的特定项问题、考查求展开式的系数和问题常用的方法是赋值法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•海淀区二模)一个几何体的三视图如图所示,则这个几何体的体积为
π+1
π+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•海淀区二模)已知函数f(x)=sinxcosx+sin2x.
(Ⅰ)求f(
π
4
)
的值;
(II)若x∈[0,
π
2
]
,求f(x)的最大值及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•海淀区二模)如图,已知⊙O的弦AB交半径OC于点D,若AD=3,BD=2,且D为OC的中点,则CD的长为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•海淀区二模)在一个正方体ABCD-A1B1C1D1中,P为正方形A1B1C1D1四边上的动点,O为底面正方形ABCD的中心,M,N分别为AB,BC中点,点Q为平面ABCD内一点,线段D1Q与OP互相平分,则满足
MQ
MN
的实数λ的值有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•海淀区二模)已知函数f(x)=(ax2-x)lnx-
12
ax2+x
.(a∈R).
(I)当a=0时,求曲线y=f(x)在(e,f(e))处的切线方程(e=2.718…);
(II)求函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案