精英家教网 > 高中数学 > 题目详情
19.在△ABC中,a2=b2+c2+$\sqrt{3}$bc,则∠A等于(  )
A.60°B.45°C.120°D.150°

分析 由余弦定理a2=b2+c2-2bccosA与题中等式比较,可得cosA=-$\frac{\sqrt{3}}{2}$,结合A是三角形的内角,可得A的大小.

解答 解:∵由余弦定理,得a2=b2+c2-2bccosA
又a2=b2+c2+bc,
∴cosA=-$\frac{\sqrt{3}}{2}$
又∵A是三角形的内角,
∴A=150°,
故选:D.

点评 本题考查了余弦定理的应用,特殊角的三角函数值的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.棱长为1的正方体ABCD-A1B1C1D1中,E、F分别为棱BC、DD1的中点.
(1)若平面AFB1与平面BCC1B1的交线为l,l与底面AC的交点为点G,试求AG的长;
(2)求点A到平面B1EF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)是R上的奇函数,且x∈(0,+∞)时,f(x)=x2+1,求f(x)在R上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知实数x和y满足方程:(x+1)2+y2=$\frac{1}{4}$,试求:
(1)$\frac{y}{x}$的最值;
(2)$\sqrt{(x-2)^{2}+(y-3)^{2}}$的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知$\sqrt{3}$f(x)-f(-$\frac{1}{x}$)=x2,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数y=f(x)的图象与y=2x+a的图象关于直线y=-x对称,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)有2f(x)-f($\frac{1}{x}$)=$\frac{3}{{x}^{2}}$,则f(x)min=2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某车间生产的10件产品中有3件次品,7件合格品,现从10件产品中随意抽取5件.
(1)其中恰有2件次品的抽法有多少种?
(2)其中至少有2件次品的抽法有多少种?
(3)其中至多有2件次品的抽法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若a>1,b>0,且ab+a-b=2$\sqrt{2}$,则ab-a-b=2.

查看答案和解析>>

同步练习册答案