4£®2016ÄêÃÀ¹ú×Üͳ´óÑ¡¹ýºó£¬ÓÐýÌå´Óij¹«Ë¾µÄÈ«ÌåÔ±¹¤ÖÐËæ»ú³éÈ¡ÁË200ÈË£¬¶ÔËûÃǵÄͶƱ½á¹û½øÐÐÁËͳ¼Æ£¨²»¿¼ÂÇÆúȨµÈÆäËûÇé¿ö£©£¬·¢ÏÖÖ§³ÖÏ£À­ÀïµÄÒ»¹²ÓÐ95ÈË£¬ÆäÖÐŮԱ¹¤55ÈË£¬Ö§³ÖÌØÀÊÆÕµÄÄÐÔ±¹¤ÓÐ60ÈË£®
£¨¢ñ£©¸ù¾ÝÒÑÖªÌõ¼þÍê³ÉÏÂÃæµÄ2¡Á2ÁÐÁª±í£º¾Ý´Ë²ÄÁÏ£¬ÊÇ·ñÓÐ95%µÄ°ÑÎÕÈÏΪͶƱ½á¹ûÓëÐÔ±ðÓйأ¿
Ö§³ÖÏ£À­ÀïÖ§³ÖÌØÀÊÆպϼÆ
ÄÐÔ±¹¤
ŮԱ¹¤
ºÏ¼Æ
£¨¢ò£©Èô´Ó¸Ã¹«Ë¾µÄËùÓÐÄÐÔ±¹¤ÖÐËæ»ú³éÈ¡3ÈË£¬¼ÇÆäÖÐÖ§³ÖÌØÀÊÆÕµÄÈËÊýΪX£¬ÇóËæ»ú±äÁ¿XµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®£¨ÓÃÏàÓ¦µÄƵÂʹÀ¼Æ¸ÅÂÊ£©
¸½£º
P£¨K2¡Ýk0£©0.150.100.050.0250.0100.0050.001
K02.0722.7063.8415.0246.6357.87910.828
£¨²Î¿¼¹«Ê½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£©

·ÖÎö £¨¢ñ£©¸ù¾ÝÌõ¼þÖÐËù¸øµÄÊý¾Ý£¬Ð´³öÁÐÁª±í£»¸ù¾ÝÁÐÁª±íºÍÇó¹Û²âÖµµÄ¹«Ê½£¬°ÑÊý¾Ý´úÈ빫ʽ£¬Çó³ö¹Û²âÖµ£¬°Ñ¹Û²âֵͬÁÙ½çÖµ½øÐбȽϣ¬µÃµ½ÓÐ95%µÄ°ÑÎÕÈÏΪͶƱ½á¹ûÓëÐÔ±ðÓйأ®
£¨¢ò£©X¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬X¡«B£¨3£¬$\frac{3}{5}$£©£¬Çó³öÏàÓ¦µÄ¸ÅÂÊ£¬¿ÉµÃXµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®

½â´ð ½â£º£¨¢ñ£©¸ù¾ÝÒÑÖªÌõ¼þ£¬¿ÉµÃ2¡Á2ÁÐÁª±í£º

Ö§³ÖÏ£À­ÀïÖ§³ÖÌØÀÊÆպϼÆ
ÄÐÔ±¹¤4060100
ŮԱ¹¤5545100
ºÏ¼Æ95105200
K2=$\frac{200£¨40¡Á45-55¡Á60£©^{2}}{95¡Á105¡Á100¡Á100}$¡Ö4.51£¾3.841£¬¡àÓÐ95%µÄ°ÑÎÕÈÏΪͶƱ½á¹ûÓëÐÔ±ðÓйأ®
£¨¢ò£©Ö§³ÖÌØÀÊÆյĸÅÂÊΪ$\frac{3}{5}$²¢ÇÒX¡«£¨3£¬$\frac{3}{5}$£©£®X=0£¬1£¬2£¬3
P£¨X=0£©=C30£¨$\frac{3}{5}$£©3=$\frac{27}{125}$£¬
P£¨X=1£©=C31£¨$\frac{3}{5}$£©£¨$\frac{2}{5}$£©2=$\frac{36}{125}$£¬
P£¨X=2£©=C32£¨$\frac{3}{5}$£©2£¨$\frac{2}{5}$£©=$\frac{54}{125}$£¬
P£¨X=3£©=C33£¨$\frac{2}{5}$£©3=$\frac{8}{125}$£¬
Æä·Ö²¼ÁÐÈçÏ£º
X0123
P$\frac{27}{125}$$\frac{36}{125}$$\frac{54}{125}$$\frac{8}{125}$
¡àE£¨X£©=3¡Á$\frac{3}{5}$=$\frac{9}{5}$£®

µãÆÀ ±¾Ì⿼²é¶ÀÁ¢ÐÔ¼ìÑ飬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁÐÓëÆÚÍû£¬¿¼²éѧÉúµÄÔĶÁÓë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÉèÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£®ÒÑÖªa1=a£¬£¨a¡Ù3£©an+1=Sn+3n£¬n¡ÊN*£®
£¨¢ñ£©Éèbn=Sn-3n£¬ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨¢ò£©Èôan+1¡Ýan£¬n¡ÊN*£¬ÇóaµÄÈ¡Öµ·¶Î§£®£¨ÎÄ¿ÆÇó{an}µÄͨÏʽ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÈçͼËùʾ£¬ÔÚб¶ÈÒ»¶¨µÄɽÆÂÉϵÄÒ»µãA²âµÃɽ¶¥ÉÏÒ»½¨ÖþÎﶥ¶ËC¶ÔÓÚɽƵÄб¶ÈΪ15¡ã£¬Ïòɽ¶¥Ç°½ø100Ã׺󵽴ïµãB£¬ÓÖ´ÓµãB²âµÃб¶ÈΪ45¡ã£¬½¨ÖþÎïµÄ¸ßCDΪ50Ã×£®Çó´Ëɽ¶ÔÓÚµØƽÃæµÄÇãб½Ç¦ÈµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Í¬Ê±Í¶ÖÀ3öӲ±Ò£¬ÄÇô»¥Îª¶ÔÁ¢Ê¼þµÄÊÇ£¨¡¡¡¡£©
A£®ÖÁÉÙÓÐÒ»¸öÕýÃæºÍ×î¶àÒ»¸öÕýÃæB£®×î¶àÁ½¸öÕýÃæºÍÖÁÉÙÁ½¸öÕýÃæ
C£®²»¶àÓÚÒ»¸öÕýÃæºÍÖÁÉÙÁ½¸öÕýÃæD£®ÖÁÉÙÁ½¸öÕýÃæºÍÇ¡ÓÐÒ»¸öÕýÃæ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{3}$ax3+$\frac{1}{2}$bx2+cxÔڵ㣨-1£¬f£¨-1£©£©´¦µÄÇÐÏßÓëxÖáƽÐУ¬Ôڵ㣨1£¬f£¨1£©£©´¦ÇÐÏßµÄбÂÊΪ1£¬ÓÖ¶ÔÈÎÒâx¡ÊR£¬¶¼ÓÐx¡Üf'£¨x£©ºã³ÉÁ¢£®
£¨¢ñ£©Çóf£¨x£©µÄ½âÎöʽ£»
£¨¢ò£©Çóg£¨x£©=12f£¨x£©-4x2-3x-3ÔÚ$[{\frac{1}{2}£¬2}]$ÉϵÄ×î´óÖµ£»
£¨¢ó£©Éèh£¨x£©=$\frac{m}{x}$+x•lnx£¬Èô¶ÔÈÎÒâx1£¬x2¡Ê$[{\frac{1}{2}£¬2}]$£¬¶¼ÓÐh£¨x1£©¡Ýg£¨x2£©£®ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®°Ñ89»¯³ÉËĽøÖÆÊýµÄĩλÊý×ÖΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÏÂÁк¯ÊýÖУ¬ÒÔ¦ÐΪÖÜÆÚÇÒÔÚÇø¼ä£¨0£¬$\frac{¦Ð}{2}$£©ÉÏΪÔöº¯ÊýµÄÊÇ£¨¡¡¡¡£©
A£®y=sin$\frac{x}{2}$B£®y=sin xC£®y=-tan xD£®y=-cos 2x

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=-2sin¦È£¬ÔòÆäÖ±½Ç×ø±ê·½³ÌΪx2+£¨y+1£©2=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Ë«ÇúÏßCµÄ×ó£¬ÓÒ½¹µã·Ö±ðΪF1£¨-1£¬0£©£¬F2£¨1£¬0£©£¬Å×ÎïÏßy2=4xÓëË«ÇúÏßCµÄÒ»¸ö½»µãΪP£¬Èô£¨$\overrightarrow{{F}_{2}P}$+$\overrightarrow{{F}_{2}{F}_{1}}$£©•£¨$\overrightarrow{{F}_{2}P}$-$\overrightarrow{{F}_{2}{F}_{1}}$£©=0£¬ÔòCµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®1+$\sqrt{2}$C£®1+$\sqrt{3}$D£®2+$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸