精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),x∈R的最大值是1,且函数最大值与最小值间对应的横坐标最小距离为π,其图象经过点M($\frac{π}{3}$,$\frac{1}{2}$).
(Ⅰ)求f(x)的解析式;
(Ⅱ)设f(α)=$\frac{2\sqrt{5}}{5}$,f(β+$\frac{π}{2}$)=-$\frac{\sqrt{10}}{10}$,α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),求sinα,cosβ的值.

分析 (1)首先,根据已知,得到A=1,$\frac{T}{2}=π$,从而有T=$\frac{2π}{ω}$=2π,然后,将点M($\frac{π}{3}$,$\frac{1}{2}$)代入,即可得到结果;
(2)根据(1),得到cosα=$\frac{2\sqrt{5}}{5}$,sinβ=$\frac{\sqrt{10}}{10}$,然后,结合同角三角函数基本关系式求解即可.

解答 解:(1)根据题意,得A=1,
∵函数最大值与最小值间对应的横坐标最小距离为π,
∴$\frac{T}{2}=π$,
∴T=$\frac{2π}{ω}$=2π,
∴ω=1.
∴f(x)=sin(x+φ),
将点M($\frac{π}{3}$,$\frac{1}{2}$)代入上述解析式,得.
f($\frac{π}{3}$)=sin($\frac{π}{3}$+φ)=$\frac{1}{2}$,0<φ<π,
∴φ=$\frac{π}{2}$,
∴f(x)=sin(x+$\frac{π}{2}$)=cosx.
(2)根据(1),得
f(α)=cosα=$\frac{2\sqrt{5}}{5}$,
f(β+$\frac{π}{2}$)=-$\frac{\sqrt{10}}{10}$,
∴cos($β+\frac{π}{2}$)=-sinβ=-$\frac{\sqrt{10}}{10}$,
∴sinβ=$\frac{\sqrt{10}}{10}$,
∵α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),
∴sinα=$\sqrt{1-co{s}^{2}α}=\frac{\sqrt{5}}{5}$,
cosβ=$\sqrt{1-si{n}^{2}β}=\frac{3\sqrt{10}}{10}$.

点评 本题考查由y=Asin(ωx+φ)的部分图象确定解析式、函数y=Asin(ωx+φ)的图象变换,考查函数方程思想、数形结合思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知实数x、y、z不全为零,求证:$\sqrt{{x}^{2}+xy+{y}^{2}}$+$\sqrt{{y}^{2}+yz+{z}^{2}}$+$\sqrt{{z}^{2}+zx+{x}^{2}}$>$\frac{3}{2}$(x+y+z).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设f(x)=2x+3,g(x)=f(x-2),则g(x)等于(  )
A.2x+1B.2x-1C.2x-3D.2x+7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设集合A={x|-1<x<3},B={x|x+a>0},若A⊆B,则实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.一个几何体的三视图如图所示,若该几何体的体积为$\frac{10}{3}$,则a+b2的最小值为4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示为一个多面组合体的三视图(单位:cm)
(1)用斜二测法作出该组合体的直观图;
(2)求组合体中正四棱锥侧棱与底面所成角的大小(精确到0.1°)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.写出下列各点的极坐标,如图所示.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x+2+$\frac{1}{x}$,x∈(0,+∞),求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在极坐标系中,已知一个圆的方程为ρ=12sin(θ-$\frac{π}{6}$),则过圆心且与极轴垂直的直线的极坐标方程是ρcosθ=-3.

查看答案和解析>>

同步练习册答案