精英家教网 > 高中数学 > 题目详情
(2013•湖南)如图.在直棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=
2
,AA1=3,D是BC的中点,点E在棱BB1上运动.
(1)证明:AD⊥C1E;
(2)当异面直线AC,C1E 所成的角为60°时,求三棱锥C1-A1B1E的体积.
分析:(1)根据直三棱柱的性质,得AD⊥BB1,等腰△ABC中利用“三线合一”证出AD⊥BC,结合线面垂直判定定理,得AD⊥平面BB1C1C,从而可得AD⊥C1E;
(2)根据AC∥A1C1,得到∠EC1A1(或其补角)即为异面直线AC、C1E 所成的角.由A1C1⊥A1B1且A1C1⊥AA1,证出A1C1⊥平面AA1B1B,从而在Rt△A1C1E中得到∠EC1A1=60°,利用余弦的定义算出C1E=2A1C1=2
2
,进而得到△A1B1E面积为
2
,由此结合锥体体积公式即可算出三棱锥C1-A1B1E的体积.
解答:解:(1)∵直棱柱ABC-A1B1C1中,BB1⊥平面ABC,AD?平面ABC,∴AD⊥BB1
∵△ABC中,AB=AC,D为BC中点,∴AD⊥BC
又∵BC、BB1?平面BB1C1C,BC∩BB1=B
∴AD⊥平面BB1C1C,结合C1E?平面BB1C1C,可得AD⊥C1E;
(2)∵直棱柱ABC-A1B1C1中,AC∥A1C1
∴∠EC1A1(或其补角)即为异面直线AC、C1E 所成的角
∵∠BAC=∠B1A1C1=90°,∴A1C1⊥A1B1
又∵AA1⊥平面A1B1C1,可得A1C1⊥AA1
∴结合A1B1∩AA1=A1,可得A1C1⊥平面AA1B1B,
∵A1E?平面AA1B1B,∴A1C1⊥A1E
因此,Rt△A1C1E中,∠EC1A1=60°,可得cos∠EC1A1=
A 1C1
C1E
=
1
2
,得C1E=2A1C1=2
2

又∵B1C1=
A1C12+A 1B12
=2,∴B1E=
C 1E2-B1C12
=2
由此可得V C1-A1B1E=
1
3
S A1B1E×A1C1=
1
3
×
1
2
×2×
2
×
2
=
2
3
点评:本题给出直三棱柱的底面是等腰直角三角形,在已知侧棱长和底面边长的情况下证明线线垂直并求锥体的体积,着重考查了直棱柱的性质、空间线面垂直的判定与性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•湖南)在等腰直角三角形ABC中,AB=AC=4,点P是边AB边上异于AB的一点,光线从点P出发,经BC,CA反射后又回到点P(如图1),若光线QR经过△ABC的重心,则AP等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖南)如图,在半径为
7
的⊙O中,弦AB,CD相交于点P,PA=PB=2,PD=1,则圆心O到弦CD的距离为
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖南)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:
X 1 2 3 4
Y 51 48 45 42
这里,两株作物“相近”是指它们之间的直线距离不超过1米.
(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰 好“相近”的概率;
(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖南)如图,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.
(Ⅰ)证明:AC⊥B1D;
(Ⅱ)求直线B1C1与平面ACD1所成的角的正弦值.

查看答案和解析>>

同步练习册答案