精英家教网 > 高中数学 > 题目详情
7.在△ABC中,a,b,c分别为角A,B,C的对边,a2-c2=b2-$\frac{8bc}{5}$,a=6,sinB=$\frac{4}{5}$.
(Ⅰ)求角A的正弦值;
(Ⅱ)求△ABC的面积.

分析 (Ⅰ)由已知利用余弦定理可求cosA,进而利用同角三角函数基本关系式可求sinA的值.
(Ⅱ)由已知利用正弦定理可求b的值,代入已知可求c的值,利用三角形面积公式即可计算得解.

解答 (本题满分为12分)
解:(Ⅰ)a2-c2=b2-$\frac{8bc}{5}$,①可得cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{4}{5}$,….(3分)
所以sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{3}{5}$.…..(6分)
(Ⅱ)因为:asinB=bsinA,a=6,sinA=$\frac{3}{5}$,sinB=$\frac{4}{5}$,
所以:解得b=8,…..(8分)
因为:a=6,b=8,代入①,可得:c=10或$\frac{14}{5}$,…..(10分)
所以:S△ABC=$\frac{1}{2}$bcsinA=24或$\frac{168}{25}$.…..(12分)

点评 本题主要考查了余弦定理,同角三角函数基本关系式,正弦定理,三角形面积公式在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.将函数$f(x)=2sin(2x+\frac{π}{6})$的图象向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象,则g(0)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=x+$\frac{1}{x}$,g(x)=f2(x)-af(x)+2a有四个不同的零点x1,x2,x3,x4,则[2-f(x1)]•[2-f(x2)]•[2-f(x3)]•[2-f(x4)]的值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,曲线C1:x+y=4,曲线${C_2}:\left\{\begin{array}{l}x=1+cosθ\\ y=sinθ\end{array}\right.(θ$为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1,C2的极坐标方程;
(2)若射线l:θ=α(p>0)分别交C1,C2于A,B两点,求$\frac{{|{OB}|}}{{|{OA}|}}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.△ABC的内角A,B,C的对边分别为a,b,c,已知a=2$\sqrt{5}$,c=4,cosA=$\frac{2}{3}$,则b=(  )
A.2$\sqrt{2}$B.2$\sqrt{5}$C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=4,点D是A1C1的中点,则异面直线AD和BC1所成角的大小为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若直线l经过坐标原点,且定点A(1,0),B(0,1)到l的距离相等,则直线l的方程为y=±x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设Sn为等差数列{an}的前n项的和a1=1,$\frac{{{S_{2017}}}}{2017}-\frac{{{S_{2015}}}}{2015}=1$,则数列$\left\{{\frac{1}{S_n}}\right\}$的前2017项和为(  )
A.$\frac{2017}{1009}$B.$\frac{2017}{2018}$C.$\frac{1}{2017}$D.$\frac{1}{2018}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知全集为R,集合A={x|$\frac{x-3}{x+1}$≤0},集合B={x||2x+1|>3}.求A∩(∁RB).

查看答案和解析>>

同步练习册答案