精英家教网 > 高中数学 > 题目详情
如图,正方体ABCD-A1B1C1D1中,E是CC1的中点,F是AC与BD的交点.
(1)求证:BD⊥A1F;
(2)求直线BE与平面A1EF所成角的正弦值.
考点:直线与平面所成的角,直线与平面垂直的性质
专题:空间位置关系与距离,空间角
分析:(1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,由
BD
A1F
=0,利用向量法能证明BD⊥A1F.
(2)求出平面A1EF的法向量,设直线BE与平面A1EF所成角为θ,由sinθ=|cos<
BE
n
>|=
|
BE
n
|
|
BE
|•|
n
|
,利用向量法能求出直线BE与平面A1EF所成角的正弦值.
解答: (1)证明:以D为原点,DA为x轴,DC为y轴,DD1为z轴,
建立空间直角坐标系,
设正方体ABCD-A1B1C1D1的棱长为2,
B(2,2,0),D(0,0,0),A1(2,0,2),F(1,1,0),
BD
=(-2,-2,0),
A1F
=(-1,1,-2),
BD
A1F
=2-2+0=0,
∴BD⊥A1F.
(2)解:B(2,2,0),E(0,2,1),
A1(2,0,2),F(1,1,0),
BE
=(-2,0,1),
A1E
=(-2,2,-1),
A1F
=(-1,1,-2),
设平面A1EF的法向量
n
=(x,y,z),
n
A1E
=-2x+2y-z=0
n
A1F
=-x+y-2z=0
,取x=1,得
n
=(1,1,0),
设直线BE与平面A1EF所成角为θ,
sinθ=|cos<
BE
n
>|=
|
BE
n
|
|
BE
|•|
n
|
=
2
5
2
=
10
5
点评:本题考查线面平行,线面垂直的证明,考查直线与平面所成角的求法,解题时要注意空间中线线、线面、面面间的位置关系及性质的合理运用,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求下列各三角函数值:
(1)tan(-
π
6
);
(2)sin(-390°);
(3)cos(-
3
).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PD⊥平面ABCD,AD⊥PC,AD∥BC,PD:DC:BC=1:1:
2
.求:
(1)直线PB与与平面ABCD所成角的大小;
(2)直线PB与平面PDC所成角的大小.
(3)直线PC与平面PBD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

F1,F2是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦点,过F1的直线l与C的左右两支分别交于AB两点,若BF2⊥AB,且线段AB,BF2,AF2长度成等差数列,则e=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

用归纳法证明:?n∈N*,3n>n2-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱柱ABC-A1B1C1中,△ABC是以AC为斜边的等腰直角三角形,且B1A=B1C=B1B=AC=2.
(Ⅰ)求证:平面B1AC⊥底面ABC;
(Ⅱ)求B1C与平面ABB1A1所成角的正弦值;
(Ⅲ)若E,F分别是线段A1C1,C1C的中点,问在线段B1F上是否存在点P,使得EP∥平面ABB1A1

查看答案和解析>>

科目:高中数学 来源: 题型:

定长为3的线段MN的两个端点M、N分别在x轴、y轴上滑动,动点P满足
NP
=2
PM

(1)求点P的轨迹方程;
(2)点P的轨迹设为曲线T,设△ABC是曲线T的内接三角形,其中A是T与x轴正半轴的交点.直线AB、AC斜率的乘积为-
1
4
,求证△ABC的重心G为定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的前n项和Sn
(1)求数列{
Sn
n
}是等差数列
(2)若a1=1,且对任意正整数n,k(n>k),都有
Sn+k
+
Sn-k
=2
Sn
成立,求数列{an}的通项公式.
(3)记bn=a(a>0),求证:
b1+b2+…+bn
n
b1+bn
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知S、A、B、C是球O表面上的点,SA⊥平面ABC,△ABC为等边三角形,SA=AB=1,则球O的表面积为(  )
A、
7
3
π
B、
4
3
π
C、π
D、
1
4
π

查看答案和解析>>

同步练习册答案