精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2x
(Ⅰ)若f(x)=2,求x的值;
(Ⅱ)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.

【答案】解:(Ⅰ)当x≤0时f(x)=0,
当x>0时,
有条件可得,
即22x﹣2×2x﹣1=0,解得 ,∵2x>0,∴ ,∴
(Ⅱ)当t∈[1,2]时,
即m(22t﹣1)≥﹣(24t﹣1).∵22t﹣1>0,∴m≥﹣(22t+1).
∵t∈[1,2],∴﹣(1+22t)∈[﹣17,﹣5],
故m的取值范围是[﹣5,+∞).
【解析】(I)当x≤0时得到f(x)=0而f(x)=2,所以无解;当x>0时解出f(x)=2求出x即可;(II)由 t∈[1,2]时,2tf(2t)+mf(t)≥0恒成立得到,得到f(t)= ,代入得到m的范围即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和为Sn , 若a1=1,an+1=3Sn(n≥1),则a6=(
A.3×44
B.3×44+1
C.44
D.44+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶。测量船于水面A处测得B点和D点的仰角分别为,于水面C处测得B点和D点的仰角均为,AC=0.1km。

(Ⅰ)试探究图中B,D间的距离与另外哪两点间距离会相等?

(II)求B,D间的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 (m>0,n>0),若m+n∈[1,2],则 的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:x∈A={x|x2﹣2x﹣3≤0,x∈R},q:x∈B={x|x2﹣2mx+m2﹣9≤0,x∈R,m∈R}.
(1)若A∩B=[1,3],求实数m的值;
(2)若p是q的充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P( ,1),Q(cosx,sinx),O为坐标原点,函数f(x)=
(Ⅰ)求函数f(x)的解析式及f(x)的最小正周期;
(Ⅱ)若A为△ABC的内角,f(A)=4,BC=3,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1axby+1=0(ab不同时为0),l2:(a-2)xya=0,

(1)b=0,且l1l2,求实数a的值;

(2)b=3,且l1l2时,求直线l1l2之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:

女性用户

分值区间

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

频数

20

40

80

50

10

男性用户

分值区间

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

频数

45

75

90

60

30

(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);
(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x2+ex (x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是(
A.(﹣
B.(
C.(
D.(

查看答案和解析>>

同步练习册答案