精英家教网 > 高中数学 > 题目详情
16.在△ABC中,若$asinBcosC+csinBcosA=\frac{1}{2}b$,且a>b,
(1)求角B的大小;
(2)若$b=\sqrt{13},a+c=4$,求△ABC的面积.

分析 (1)利用正弦定理公式化简,即可求角B的大小;
(2)运用三角形的内角和定理可得角A,再由正弦定理,计算即可得到c.

解答 解:(1)由$asinBcosC+csinBcosA=\frac{1}{2}b$,
可得:sinAcosC+sinCcosA=$\frac{1}{2}$,
?sin(A+C)=$\frac{1}{2}$
?sinB=$\frac{1}{2}$.
∵a>b,
∴B=$\frac{π}{6}$.
(2)$b=\sqrt{13},a+c=4$,
∴(a+c)2=16,即a2+c2+2ac=16
由cosB=$\frac{\sqrt{3}}{2}$=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$,可得:${a}^{2}+{c}^{2}=\sqrt{3}ac+13$,
∴ac(2+$\sqrt{3}$)=3,
ac=3(2-$\sqrt{3}$)
∴${S}_{△ABC}=\frac{1}{2}acsinB$=$\frac{1}{2}×3(2-\sqrt{3})×\frac{1}{2}$=$\frac{6-3\sqrt{3}}{4}$.

点评 本题考查三角形的正余弦定理的运用和计算能力以及三角形的面积的计算.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.边长为2的两个等边△ABD,△CBD所在的平面互相垂直,则四面体ABCD的体积是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.等差数列{an}中,2a1+3a2=11,2a3=a2+a6-4,其前n项和为Sn
(1)求数列{an}的通项公式;
(2)设数列{bn}满足${b_n}=\frac{1}{{{S_{n+1}}-1}}$,求其前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>1)的焦距为2,过短轴的一个端点与两个焦点的圆的面积为$\frac{4}{3}$π,过椭圆C的右焦点作斜率为k(k≠0)的直线l与椭圆C相交于A、B两点,线段AB的中点为P.
(1)求椭圆C的标准方程;
(2)过点P垂直于AB的直线与x轴交于点D,且|DP|=$\frac{3\sqrt{2}}{7}$,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知曲线C:$\left\{\begin{array}{l}{x=3\sqrt{3}cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数),直线l:ρ(cosθ-$\sqrt{3}$sinθ)=12.
(Ⅰ)求直线l的直角坐标方程及曲线C的普通方程;
(Ⅱ)设点P在曲线C上,求点P到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设x、y、z分别表示甲、乙、丙3个盒子中的球数..
(1)求掷完3次后,x=0,y=1,z=2的概率;
(2)记ξ=x+z,求随机变量ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知直线l:x-y-1=0,以原点O为极点,x轴非负半轴为极轴,取相同长度单位建立极坐标系,曲线C的极坐标方程为ρ2-4ρsinθ=5.
(Ⅰ)将直线l写成参数方程$\left\{{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}}\right.$(t为参数,α∈[0,π))的形式,并求曲线C的直角坐标方程;
(Ⅱ)设直线l与曲线C交于点A,B(点A在第一象限)两点,若点M的直角坐标为(1,0),求△OMA的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法中正确的是(  )
A.命题“?x∈R.ex>0”的否定是“?x∈R,ex>0”
B.命题“若a=-1,则函数f(x)=ax2+2x-1只有一个零点”的逆命题是真命题
C.“x2+2x≥ax在x∈[1,2]上恒成立”?“对于x∈[1,2]有(x2+2x)min≥(ax)max
D.命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若角θ是第四象限的角,则角${-^{\;}}\frac{θ}{2}$是(  )
A.第一、三象限角B.第二、四象限角C.第二、三象限角D.第一、四象限角

查看答案和解析>>

同步练习册答案