精英家教网 > 高中数学 > 题目详情
10.一个袋中装有大小相同的5个白球和3个红球,现在不放回的取2次球,每次取出一个球,记“第1次拿出的是白球”为事件A,“第2次拿出的是白球”为事件B,则P(B|A)是(  )
A.$\frac{5}{8}$B.$\frac{5}{16}$C.$\frac{4}{7}$D.$\frac{5}{14}$

分析 根据题意,利用条件概率计算公式求出事件A发生的条件下事件B发生的概率即可.

解答 解:一个口袋中装有5个白球,3个红球,每次从袋中随机摸出一个球,不放回地摸2次,
A表示“第一次拿出的是白球”,B表示“第二次拿出的是白球”,
则P(A)=$\frac{5}{8}$,P(AB)=$\frac{5}{8}$×$\frac{4}{7}$=$\frac{5}{14}$;
在摸出的第一个是白球的条件下,摸出的第二个球是白球的概率是:
p(B|A)=$\frac{\frac{5}{14}}{\frac{5}{8}}$=$\frac{4}{7}$.
故选:C.

点评 本题考查了条件概率的计算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知直线l经过两直线l1:2x-y+4=0与l2:x-y+5=0的交点,且与直线x-2y-6=0垂直.
(1)求直线l的方程;
(2)若点P(a,1)到直线l的距离为$\sqrt{5}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算定积分
(1)${∫}_{-1}^{1}$(x2+cosx)dx
(2)${∫}_{-2}^{2}$$(x+\sqrt{4-{x^2}})dx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知抛物线C:y2=4x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若$\overrightarrow{FP}=5\overrightarrow{FQ}$,则|QF|=(  )
A.$\frac{7}{2}$B.$\frac{8}{5}$C.$\frac{5}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知动圆M过定点F(1,0),且与直线x=-1相切.
(1)求动圆圆心M的轨迹C的方程;
(2)过点F且斜率为2的直线交轨迹C于S,T两点,求弦ST的长度;
(3)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.给出一个算法:

根据以上算法,可求得f(-1)+f(3)的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若a=3,b=4,sinC=$\frac{1}{2}$,则此三角形的面积是(  )
A.8B.6C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.当0<a<1时,不等式${log_a}(4-3x)>-{log_{\frac{1}{a}}}(2+x)$的解集是($\frac{1}{2}$,$\frac{4}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,以AC=2为直径的⊙B,点E为$\widehat{AC}$的中点,点D在直径AC延长线上,CD=1,FC⊥平面BED,FC=2.
(Ⅰ)证明:EB⊥FD;
(Ⅱ)求点B到平面FED的距离.

查看答案和解析>>

同步练习册答案