精英家教网 > 高中数学 > 题目详情
1.已知如图,△ABC和△DBC所在的平面互相垂直,且AB=BC=BD=1,∠ABC=∠DBC=120°
(1)求证:AD⊥BC;
(2)求二面角A-BD-C的余弦值.

分析 (1)在平面ABC内作AH⊥BC,H是垂足,连HD,则AH⊥平面BDC,HD⊥BC,由三垂线定理能证明AD⊥BC.
(2)在平面BDC内作HR⊥BD,连AR,则∠ARH是二面角A-BD-C的平面角的补角,由此能求出二面角A-BD-C的余弦值.

解答 (1)证明:在平面ABC内作AH⊥BC,H是垂足,连HD.
因为平面ABC⊥平面BDC.所以AH⊥平面BDC.
HD是AD在平面BDC的射影.依题设条件得HD⊥BC,
∴由三垂线定理得AD⊥BC.
(2)解:在平面BDC内作HR⊥BD,R是垂足,连AR.
HR是AR在平面BDC的射影,∴AR⊥BD,
∴∠ARH是二面角A-BD-C的平面角的补角,
设AB=a,得AH=$\frac{\sqrt{3}}{2}a$,HR=$\frac{\sqrt{3}}{2}$BH=$\frac{\sqrt{3}}{4}a$,
∴cos$∠ARH=\frac{RH}{AR}$=$\frac{\frac{\sqrt{3}a}{4}}{\sqrt{(\frac{\sqrt{3}}{2}a)^{2}+(\frac{\sqrt{3}}{4}a})^{2}}$=$\frac{\sqrt{5}}{5}$.
∴二面角A-BD-C的余弦值为$\frac{\sqrt{5}}{5}$.

点评 本题考查异面直线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.圆(x+2)2+y2=1与圆(x-2)2+(y-1)2=16的位置关系为(  )
A.相交B.相离C.外切D.内切

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(文)试卷(解析版) 题型:填空题

中,,则的外接圆半径;类比到空间,若三棱锥的三条侧棱两两互相垂直,且长度分别为,则三棱锥的外接球的半径

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,△ABD是边长为2$\sqrt{3}$的正三角形,∠CBD=∠CDB=30°,E为棱PA的中点.
(1)求证:DE∥平面PBC;
(2)若平面PAB⊥平面ABCD,PA=PB=2,求二面角P-BC-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知四棱锥P-ABCD的底面为菱形,∠BCD=120°,AB=PC=2,AP=BP=$\sqrt{2}$.
(1)求证:AB⊥PC;
(2)求侧面BPC与侧面DPC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个正方体削去一个角所几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),若削去的几何体中原正方体的顶点到截面的距离为h,削去的几何体中内切球的半径为R,则$\frac{h}{R}$的值为(  )
A.$\frac{\sqrt{6}}{2}$B.2$\sqrt{3}$C.1+$\sqrt{3}$D.$\frac{1+\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在平面直角坐标系xOy中,已知椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,点A(${\frac{1}{3}$,$\frac{2}{3}}$)在椭圆E上,射线AO与椭圆E的另一交点为B,点P(-4t,t)在椭圆E内部,射线AP,BP与椭圆E的另一交点分别为C,D.
(1)求椭圆E的方程;
(2)求证:CD∥AB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知A={x|-3≤x≤a}≠∅,B={y|y=3x+10,x∈A},C={z|5-a≤z≤8}且B∩C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设α∈$\left\{{-1,1,\frac{1}{2},\frac{2}{3}}\right\}$,则使幂函数y=xα的定义域为R且为奇函数的所有α的值为{1}.

查看答案和解析>>

同步练习册答案