精英家教网 > 高中数学 > 题目详情

【题目】在各项为正的数列{an}中,数列的前n项和Sn满足Sn= (an+ ),
(1)求a1 , a2 , a3
(2)由(1)猜想数列{an}的通项公式,并用数学归纳法证明你的猜想.

【答案】
(1)解:易求得
(2)解:猜想

证明:①当n=1时, ,命题成立

②假设n=k时, 成立,

则n=k+1时, = =

所以, ,∴

即n=k+1时,命题成立.

由①②知,n∈N*时,


【解析】(1)由题设条件,分别令n=1,2,3,能够求出a1,a2,a3.(2)由(1)猜想数列{an}的通项公式: ,检验n=1时等式成立,假设n=k时命题成立,证明当n=k+1时命题也成立.
【考点精析】解答此题的关键在于理解归纳推理的相关知识,掌握根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】共享单车是城市慢行系统的一种模式创新,对于解决民众出行“最后一公里”的问题特别见效,由于停取方便、租用价格低廉,各色共享单车受到人们的热捧.某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20000元,每生产一件新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数,其中 是新样式单车的月产量(单位:件),利润总收益总成本.

(1)试将自行车厂的利润元表示为月产量的函数;

(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图程序框图输出的结果为(
A.52
B.55
C.63
D.65

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知X的分布列为

X

﹣1

0

1

P

设y=2x+3,则E(Y)的值为(
A.
B.4
C.﹣1
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:

甲:82 81 79 78 95 88 93 84

乙:92 95 80 75 83 80 90 85

(1)用茎叶图表示这两组数据;

(2)现要从中选派一人参加数学竞赛,你认为选派哪位学生参加较合适?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 存在两个极值点.
(Ⅰ)求实数a的取值范围;
(Ⅱ)设x1和x2分别是f(x)的两个极值点且x1<x2 , 证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是平行四边形, 平面

的中点.

(1)求证: 平面

(2)求证:平面平面

(3)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“奶茶妹妹”对某时间段的奶茶销售量及其价格进行调查,统计出售价x元和销售量y杯之间的一组数据如下表所示:

价格x

5

5.5

6.5

7

销售量y

12

10

6

4

通过分析,发现销售量y对奶茶的价格x具有线性相关关系.
(Ⅰ)求销售量y对奶茶的价格x的回归直线方程;
(Ⅱ)欲使销售量为13杯,则价格应定为多少?
注:在回归直线y= 中, = =146.5.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱与四棱锥的组合体中,已知平面,四边形是平行四边形, ,设是线段中点.

(1)求证: 平面

(2)证明:平面平面

(3)求四棱锥的体积.

查看答案和解析>>

同步练习册答案