精英家教网 > 高中数学 > 题目详情
已知抛物线x2=4y与圆x2+y2=32相交于A,B两点,圆与y轴正半轴交于C点,直线l是圆的切线,交抛物线与M,N,并且切点在
ACB
上.
(1)求A,B,C三点的坐标;
(2)当M,N两点到抛物线焦点距离和最大时,求直线l的方程.
分析:(1)根据题意,抛物线x2=4y与圆x2+y2=32相交于A,B两点,可得
x2=4y
x2+y2=32
,解可得A、B的坐标,进而由
x=0
x2+y2=32
y>0
,知C的坐标.
(2)设M(x1,y1),N(x2,y2),则|MF|+|NF|=y1+y2+2,设切点为(x0,y0),则直线l的方程为x0x+y0y=32,由此可求出直线l的方程.
解答:解:(1)由
x2=4y
x2+y2=32
,解得A(-4,4),B(4,4),由
x=0
x2+y2=32
y>0
,解得C(0,4
2
).
(2)设M(x1,y1),N(x2,y2),则|MF|+|NF|=y1+y2+2,
设切点为(x0,y0),则直线l的方程为x0x+y0y=32,
当x0=0时,y1+y2=8
2

|MF|+|NF|=8
2
+2
,x02=32-y02
y1+y2=
64y0+4x02
y02
=
128
y02
+
64
y0
-4

4≤y0≤4
2
,∴y1+y2有最大值20.
这时|MF|+|NF|=22>8
2
+2
,∴直线l的方程为x-y+8=0或x+y-8=0.
点评:本题考查圆锥曲线的直线的位置关系,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、已知抛物线x2=4y的焦点F和点A(-1,8),点P为抛物线上一点,则|PA|+|PF|的最小值为
9

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知抛物线x2=4y的焦点F和点A(-1,8),P为抛物线上一点,则|PA|+|PF|的最小值是
9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线x2=4y上的点P(非原点)处的切线与x轴,y轴分别交于Q,R两点,F为焦点.
(Ⅰ)若
PQ
PR
,求λ.
(Ⅱ)若抛物线上的点A满足条件
PF
FA
,求△APR的面积最小值,并写出此时的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•温州一模)如图,已知抛物线x2=4y,过抛物线上一点A(x1,y1)(不同于顶点)作抛物线的切线l,并交x轴于点C,在直线y=-1上任取一点H,过H作HD垂直x轴于D,并交l于点E,过H作直线HF垂直直线l,并交x轴于点F.
(I)求证:|OC|=|DF|;
(II)试判断直线EF与抛物线的位置关系并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•浙江模拟)已知抛物线x2=4y,圆C:x2+(y-2)2=4,M(x0,y0),(x0>0,y0>0)为抛物线上的动点.
(Ⅰ)若y0=4,求过点M的圆的切线方程;
(Ⅱ)若y0>4,求过点M的圆的两切线与x轴围成的三角形面积S的最小值.

查看答案和解析>>

同步练习册答案