精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,平面平面,点分别为的中点.

1)求证:平面平面

2)求二面角的余弦值.

【答案】1)证明见解析; 2

【解析】

1)利用平行四边形得,利用中位线得,即可求证;

2)易证,,则以为原点,分别以所在直线为,,轴建立空间直角坐标系,分别求出平面与平面的法向量,再由法向量的夹角余弦值来求二面角的余弦值

1)证明:,,

的中点,且,

四边形是平行四边形,

,

的中点,

,,

平面,平面,

,,

平面平面

2,,

平面平面,平面,平面平面,

平面,

为原点,分别以所在直线为,,轴建立空间直角坐标系,

则由题,,点的中点

,,,,

,,

设平面与平面的法向量分别是,

,,

,,

,;令,

,

二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设满足以下两个条件的有穷数列期待数列:①;②.

(1)分别写出一个单调递增的3阶和4期待数列

(2)若某2013期待数列是等差数列,求该数列的通项公式;

(3)期待数列的前项和为,试证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求证:对任意实数,都有

(2)若,是否存在整数,使得在上,恒有成立?若存在,请求出的最大值;若不存在,请说明理由.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的方程为,过原点作斜率为的直线和曲线相交,另一个交点记为,过作斜率为的直线和曲线相交,另一个交点记为,过作斜率为的直线和曲线相交,另一个交点记为……,如此下去,一般地,过作斜率为的直线和曲线相交,另一个交点记为,设点.

1)指出,并求的关系式

2)求的通项公式,并指出点列…………向哪一点无限接近?说明理由;

3)令,数列的前项和为,设,求所有可能的乘积的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义域均为D的三个函数f(x),g(x),h(x)满足条件:对任意x∈D,点(x,g(x)与点(x,h(x)都关于点(x,f(x)对称,则称h(x)是g(x)关于f(x)的“对称函数”.已知g(x)=,f(x)=2x+b,h(x)是g(x)关于f(x)的“对称函数”,且h(x)≥g(x)恒成立,则实数b的取值范围是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,侧面底面是边长为2的正三角形底面是菱形,点的中点

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学在一山坡处看对面山顶上的一座铁塔,如图所示,塔及所在的山崖可视为图中的竖线,塔高80米,山高220米,200米,图中所示的山坡可视为直线且点在直线上,与水平地面的夹角为.

1)求塔尖到山坡的距离;(精确到米)

2)问此同学(忽略身高)距离山崖的水平地面多高时,观看塔的视角最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体中,,平面截长方体得到一个矩形,且

1)求截面把该长方体分成的两部分体积之比;

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为圆上一点,过点轴的垂线交轴于点,点满足

(1)求动点的轨迹方程;

(2)设为直线上一点,为坐标原点,且,求面积的最小值.

查看答案和解析>>

同步练习册答案