精英家教网 > 高中数学 > 题目详情
6.已知$0<x<\frac{π}{2}$,$sin({x-\frac{π}{6}})=\frac{1}{3}$,则$cos({x-\frac{π}{6}})$=$\frac{2\sqrt{2}}{3}$,cosx=$\frac{2\sqrt{6}-1}{6}$.

分析 由x的范围求出x-$\frac{π}{6}$的范围,再由同角三角函数的基本关系式求得$cos({x-\frac{π}{6}})$;由cosx=cos[(x-$\frac{π}{6}$)+$\frac{π}{6}$],展开两角和的余弦求得cosx.

解答 解:∵$0<x<\frac{π}{2}$,∴$-\frac{π}{6}$$<x-\frac{π}{6}$<$\frac{π}{3}$,
又$sin({x-\frac{π}{6}})=\frac{1}{3}$,
∴$cos({x-\frac{π}{6}})$=$\sqrt{1-si{n}^{2}(x-\frac{π}{6})}=\sqrt{1-(\frac{1}{3})^{2}}=\frac{2\sqrt{2}}{3}$.
则cosx=cos[(x-$\frac{π}{6}$)+$\frac{π}{6}$]=cos(x-$\frac{π}{6}$)cos$\frac{π}{6}$-sin(x-$\frac{π}{6}$)sin$\frac{π}{6}$=$\frac{2\sqrt{2}}{3}×\frac{\sqrt{3}}{2}-\frac{1}{3}×\frac{1}{2}=\frac{2\sqrt{6}-1}{6}$.
故答案为:$\frac{2\sqrt{2}}{3}$;$\frac{2\sqrt{6}-1}{6}$.

点评 本题考查三角函数的化简求值,关键是“拆角配角”思想的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.求下列函数的导数
(1)y=x+ln(1+x)
(2)y=$\frac{sinx}{x-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.($\frac{4}{x}$)′=-$\frac{4}{{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}中,a1=4,an=an-1+2n-1+3(n≥2,n∈N*
(1)证明数列{an-2n}是等差数列,并求{an}的通项公式
(2)设bn=$\frac{{a}_{n}}{{2}^{n}}$-1,求bn的前n和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,$0<φ<\frac{π}{2}$)的周期为π,且图象上一个最低点为$M({\frac{2π}{3}\;,\;\;-2})$.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)当$x∈[{0\;,\;\;\frac{π}{12}}]$,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.化简${|{-0.01}|^2}-{({-\frac{5}{8}})^0}-{3^{{{log}_3}2}}+{({lg2})^2}+lg2lg5+lg5$的结果为-1.9999.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=x2和g(x)=lnx,作一条平行于y轴的直线,交f(x),g(x)图象于A,B两点,则|AB|的最小值为$\frac{1}{2}$-ln$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列四个图中,函数y=$\frac{ln|x+1|}{x+1}$的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.通过随机询问某校110名高中学生在购买食物时是否看营养说明,得到如下的列联表:
性别与看营养说明列联表单位:名
总计
看营养说明50y80
不看营养说明x2030
总计6050z
(1)根据以上表格,写出x,y,z的值.
(2)根据以上列联表,是否有99%以上的把握认为“性别与在购买食物时看营养说明”有关?参考信息如下:
p(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+d)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步练习册答案