精英家教网 > 高中数学 > 题目详情

已知F1,F2为椭圆的两个焦点,P为椭圆上一点,若∠PF1F2:∠PF2F1:∠F1PF2=1:2:3,则此椭圆的离心率为________.

-1
分析:根据题意可知∠F1PF2=90°|F1F2|=2c,进而利用∠PF1F2=30°,∠PF2F1=60°求得|PF1|和|PF2|,进而利用椭圆定义建立等式,求得a和c的关系,则离心率可得.
解答:依题意可知∠F1PF2=90°|F1F2|=2c,
∴|PF1|=|F1F2|=c,|PF2|=|F1F2|=c
由椭圆定义可知|PF1|+|PF2|=2a=( +1)c
∴e==-1
故答案为:-1.
点评:本题主要考查了椭圆的简单性质特别是椭圆定义的运用,考查运算能力.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2为椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的两个焦点,过F2作椭圆的弦AB,若△AF1B的周长为16,椭圆的离心率e=
3
2
,则椭圆的方程为(  )
A、
x2
4
+
y2
3
=1
B、
x2
16
+
y2
3
=1
C、
x2
16
+
y2
4
=1
D、
x2
16
+
y2
12
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2为椭圆E的两个左右焦点,抛物线C以F1为顶点,F2为焦点,设P为椭圆与抛物线的一个交点,如果椭圆离心率e满足|PF1|=e|PF2|,则e的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2为椭圆
x2
25
+
y2
9
=1
的两个焦点,点P是椭圆上的一个动点,则|PF1|•|PF2|的最小值是
9
9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2为椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的焦点,B为椭圆短轴的一个端点,
BF1
BF2
1
2
F1F2
2
则椭圆的离心率的取值范围是
(0,
1
2
]
(0,
1
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•荆州模拟)已知F1、F2为椭圆C:
x2
m+1
+
y2
m
=1的两个焦点,P为椭圆上的动点,则△F1PF2面积的最大值为2,则椭圆的离心率e为(  )

查看答案和解析>>

同步练习册答案