精英家教网 > 高中数学 > 题目详情
14.某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点O为圆心的两个同心圆弧和延长后通过点AD的两条线段围成.设圆弧$\widehat{AB}$、$\widehat{CD}$所在圆的半径分别为f(x)、R米,圆心角为θ(弧度).
(1)若θ=$\frac{π}{3}$,r1=3,r2=6,求花坛的面积;
(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD的长度为多少时,花坛的面积最大?

分析 (1)设花坛的面积为S平方米.$S=\frac{1}{2}{r_2}^2θ-\frac{1}{2}{r_1}^2θ$,即可得出结论;
(2)记r2-r1=x,则0<x<10,所以$S=\frac{1}{2}({\frac{40}{3}-\frac{4}{3}x})x$=$-\frac{2}{3}{({x-5})^2}+\frac{50}{3},x∈({0,10})$,即可得出结论.

解答 解:(1)设花坛的面积为S平方米.$S=\frac{1}{2}{r_2}^2θ-\frac{1}{2}{r_1}^2θ$…(2分)
=$\frac{1}{2}×36×\frac{π}{3}-\frac{1}{2}×9×\frac{π}{3}$=$\frac{9}{2}π({m^2})$…(4分)
答:花坛的面积为$\frac{9}{2}π({m^2})$;…(5分)
(2)$\widehat{AB}$的长为r1θ米,$\widehat{CD}$的长为r2θ米,线段AD的长为(r2-r1)米
由题意知60•2(r2-r1)+90(r1θ+r2θ)=1200
即4(r2-r1)+3(r2θ+r1θ)=40*…(7分)
$S=\frac{1}{2}{r_2}^2θ-\frac{1}{2}{r_1}^2θ=\frac{1}{2}({{r_2}θ+{r_1}θ})({{r_2}-{r_1}})$…(9分)
由*式知,${r_2}θ+{r_1}θ=\frac{40}{3}-\frac{4}{3}({{r_2}-{r_1}})$…(11分)
记r2-r1=x,则0<x<10
所以$S=\frac{1}{2}({\frac{40}{3}-\frac{4}{3}x})x$=$-\frac{2}{3}{({x-5})^2}+\frac{50}{3},x∈({0,10})$…(13分)
当x=5时,S取得最大值,即r2-r1=5时,花坛的面积最大.…(15分)
答:当线段AD的长为5米时,花坛的面积最大.…(16分)

点评 本题考查利用数学知识解决实际问题,考查扇形的面积,考查配方法的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设F1,F2分别为双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$的两个焦点,M,N是双曲线C的一条渐近线上的两点,四边形MF1NF2为矩形,A为双曲线的一个顶点,若△AMN的面积为$\frac{1}{2}{c}^{2}$,则该双曲线的离心率为(  )
A.3B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=logax(a>0且a≠1)的图象经过点$(\;2\sqrt{2}\;,\;-1\;)$,函数y=bx(b>0且b≠1)的图象经过点$(\;1\;,\;2\sqrt{2})$,则下列关系式中正确的是(  )
A.a2>b2B.2a>2bC.${({\frac{1}{2}})^a}>{({\frac{1}{2}})^b}$D.(a${\;}^{\frac{1}{2}}$>b${\;}^{\frac{1}{2}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{-x+a,x<1}\\{{x}^{2},x≥1}\end{array}\right.$存在最小值,则当实数a取最小值时,f[f(-2)]=(  )
A.-2B.4C.9D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.数独游戏越来越受人们喜爱,今年某地区科技馆组织数独比赛,该区甲、乙、丙、丁四所学校的学生积极参赛,参赛学生的人数如表所示:
中学 甲 乙 丙 丁
人数 30 40 20 10
为了解参赛学生的数独水平,该科技馆采用分层抽样的方法从这四所中学的参赛学生中抽取30名参加问卷调查.
(Ⅰ)问甲、乙、丙、丁四所中学各抽取多少名学生?
(Ⅱ)从参加问卷调查的30名学生中随机抽取2名,求这2名学生来自同一所中学的概率;
(Ⅲ)在参加问卷调查的30名学生中,从来自甲、丙两所中学的学生中随机抽取2名,用X表示抽得甲中学的学生人数,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点为F,过F的直线交椭圆于A,B两点,点C是点A关于原点O的对称点,若CF⊥AB且CF=AB,则椭圆的离心率为$\sqrt{6}-\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知sinα=$\frac{1}{3}$,α为第二象限角,则cosα的值为(  )
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.$\frac{2\sqrt{2}}{3}$D.-$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}满足:a1=1,3a2-a1=1,且$\frac{2}{{a}_{n}}$=$\frac{{a}_{n-1}+{a}_{n+1}}{{a}_{n-1}{a}_{n+1}}$(n≥2)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列b1=$\frac{1}{2}$,4bn=an-1an,设{bn}的前n项和Tn.证明:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若$cos(\frac{π}{2}-α)=\frac{1}{3}$,$\frac{π}{2}<α<π$,则sin2α=(  )
A.$-\frac{{2\sqrt{2}}}{9}$B.$-\frac{{2\sqrt{2}}}{3}$C.$-\frac{{4\sqrt{2}}}{9}$D.$-\frac{4}{9}$

查看答案和解析>>

同步练习册答案